Harvard Forest Data Archive HF069-14

Data File:

Name = hf069-14-swc-2007-2017.csv
Description = soil temperature and water content 2007-2017
Rows = 92624 Columns = 19
MD5 checksum = b6e35adf1af9fed5864fdd29b910f2

Variables:

Time_EST = datetime at start of measurement interval
year = year
doy = day of year (dimensionless)
temp_15_a = soil temperature at 15cm in Pit A on north side of EMS
 shed (celsius)
temp_40_a = soil temperature at 40cm in Pit A on north side of EMS
 shed (celsius)
temp_50_a = soil temperature at 50cm in Pit A on north side of EMS
 shed (celsius)
temp_90_a = soil temperature at 90cm in Pit A on north side of EMS
 shed (celsius)
temp_15_b = soil temperature at 15cm in Pit B on southeast side of
 EMS shed (celsius)
temp_40_b = soil temperature at 40cm in Pit B on southeast side of
 EMS shed (celsius)
temp_50_b = soil temperature at 50cm in Pit B on southeast side of
 EMS shed (celsius)
temp_90_b = soil temperature at 90cm in Pit B on southeast side of
 EMS shed (celsius)
vwc_15_a = soil water content at 15cm in Pit A on north side of EMS
 shed (dimensionless)
vwc_40_a = soil water content at 40cm in Pit A on north side of EMS
 shed (dimensionless)
vwc_50_a = soil water content at 50cm in Pit A on north side of EMS
 shed (dimensionless)
vwc_90_a = soil water content at 90cm in Pit A on north side of EMS
 shed (dimensionless)
vwc_15_b = soil water content at 15cm in Pit B on southeast side of
 EMS shed (dimensionless)
vwc_40_b = soil water content at 40cm in Pit B on southeast side of
 EMS shed (dimensionless)
vwc_50_b = soil water content at 50cm in Pit B on southeast side of
 EMS shed (dimensionless)
vwc_90_b = soil water content at 90cm in Pit B on southeast side of
 EMS shed (dimensionless)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Min</th>
<th>Median</th>
<th>Mean</th>
<th>Max</th>
<th>NAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time_EST</td>
<td>2007-01-01T00:00</td>
<td>2017-07-26T07:00</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>year</td>
<td>2007.000</td>
<td>2012.000</td>
<td>2011.794</td>
<td>2017.000</td>
<td>0</td>
</tr>
<tr>
<td>doy</td>
<td>1.000</td>
<td>176.000</td>
<td>178.901</td>
<td>366.000</td>
<td>0</td>
</tr>
<tr>
<td>temp_15_a</td>
<td>0.800</td>
<td>10.500</td>
<td>10.255</td>
<td>21.400</td>
<td>54402</td>
</tr>
<tr>
<td>temp_40_a</td>
<td>4.800</td>
<td>14.000</td>
<td>13.239</td>
<td>21.900</td>
<td>71584</td>
</tr>
<tr>
<td>temp_50_a</td>
<td>2.800</td>
<td>8.800</td>
<td>8.728</td>
<td>14.700</td>
<td>54662</td>
</tr>
<tr>
<td>temp_90_a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92624</td>
</tr>
<tr>
<td>temp_15_b</td>
<td>-3.900</td>
<td>7.100</td>
<td>7.545</td>
<td>22.900</td>
<td>50304</td>
</tr>
<tr>
<td>temp_40_b</td>
<td>-0.900</td>
<td>7.200</td>
<td>7.107</td>
<td>16.600</td>
<td>71548</td>
</tr>
<tr>
<td>temp_50_b</td>
<td>3.000</td>
<td>8.400</td>
<td>8.591</td>
<td>14.900</td>
<td>64881</td>
</tr>
<tr>
<td>temp_90_b</td>
<td>0.300</td>
<td>4.800</td>
<td>5.251</td>
<td>12.800</td>
<td>63922</td>
</tr>
<tr>
<td>vwc_15_a</td>
<td>0.080</td>
<td>0.296</td>
<td>0.278</td>
<td>0.477</td>
<td>24463</td>
</tr>
<tr>
<td>vwc_40_a</td>
<td>0.089</td>
<td>0.293</td>
<td>0.276</td>
<td>0.485</td>
<td>14341</td>
</tr>
<tr>
<td>vwc_50_a</td>
<td>0.089</td>
<td>0.338</td>
<td>0.323</td>
<td>0.404</td>
<td>39745</td>
</tr>
<tr>
<td>vwc_90_a</td>
<td>0.044</td>
<td>0.291</td>
<td>0.257</td>
<td>0.313</td>
<td>34846</td>
</tr>
<tr>
<td>vwc_15_b</td>
<td>0.048</td>
<td>0.154</td>
<td>0.151</td>
<td>0.282</td>
<td>10546</td>
</tr>
<tr>
<td>vwc_40_b</td>
<td>0.086</td>
<td>0.154</td>
<td>0.153</td>
<td>0.290</td>
<td>10545</td>
</tr>
<tr>
<td>vwc_50_b</td>
<td>0.079</td>
<td>0.173</td>
<td>0.174</td>
<td>0.349</td>
<td>21517</td>
</tr>
<tr>
<td>vwc_90_b</td>
<td>0.121</td>
<td>0.239</td>
<td>0.238</td>
<td>0.336</td>
<td>12631</td>
</tr>
</tbody>
</table>
HF069–14 Plot 1

- row
- Time_EST
- year
- doy
- temp_15_a
- temp_40_a
HF069–14 Plot 4

row

vwc_50_a

vwc_90_a

vwc_15_b

vwc_40_b

vwc_50_b