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Abstract

Uncertainties in model projections of carbon cycling in terrestrial ecosystems stem from inaccurate parameterization

of incorporated processes (endogenous uncertainties) and processes or drivers that are not accounted for by the

model (exogenous uncertainties). Here, we assess endogenous and exogenous uncertainties using a model-data

fusion framework benchmarked with an artificial neural network (ANN). We used 18 years of eddy-covariance car-

bon flux data from the Harvard forest, where ecosystem carbon uptake has doubled over the measurement period,

along with 15 ancillary ecological data sets relative to the carbon cycle. We test the ability of combinations of diverse

data to constrain projections of a process-based carbon cycle model, both against the measured decadal trend and

under future long-term climate change. The use of high-frequency eddy-covariance data alone is shown to be insuffi-

cient to constrain model projections at the annual or longer time step. Future projections of carbon cycling under cli-

mate change in particular are shown to be highly dependent on the data used to constrain the model. Endogenous

uncertainties in long-term model projections of future carbon stocks and fluxes were greatly reduced by the use of

aggregated flux budgets in conjunction with ancillary data sets. The data-informed model, however, poorly repro-

duced interannual variability in net ecosystem carbon exchange and biomass increments and did not reproduce the

long-term trend. Furthermore, we use the model-data fusion framework, and the ANN, to show that the long-term

doubling of the rate of carbon uptake at Harvard forest cannot be explained by meteorological drivers, and is driven

by changes during the growing season. By integrating all available data with the model-data fusion framework, we

show that the observed trend can only be reproduced with temporal changes in model parameters. Together,

the results show that exogenous uncertainty dominates uncertainty in future projections from a data-informed

process-based model.
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Introduction

Terrestrial ecosystems mediate a large portion of the

CO2 flux between the Earth’s surface and the atmo-

sphere, with approximately 120 Pg C yr�1 taken up by

gross photosynthesis, and a slightly smaller amount

respired back (Prentice et al., 2000; Beer et al., 2010; Pan

et al., 2011). The balance of these two numbers, net eco-

system exchange (NEE), drives the terrestrial carbon

cycle and is tightly coupled to the growth rate of atmo-

spheric CO2 (Bousquet et al., 2000; Knorr et al., 2007).

For policy makers, and many earth-system scientists, a

major goal of global change research is therefore to

understand the processes responsible for changes in

terrestrial carbon cycling and to project future states of

ecosystems and climate at decadal, or even longer time

scales (Clark et al., 2001; Luo et al., 2011).

Increasingly, many long-term data sets show trends

that demand investigation. Inventory data show

increased forest growth rates in eastern North America

(McMahon et al., 2010), potentially due to recent

changes in climate, nutrient deposition, or community

structure. Similar increases in tropical (Lewis et al.,

2009) and temperate (Urbanski et al., 2007; Salzer et al.,

2009; Dragoni et al., 2011; Pilegaard et al., 2011) forest

carbon uptake have been reported (but see Fahey et al.,

2005), and have been linked to changes in the growing
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season length, and vegetation dynamics. Open ques-

tions remain as to the dominant controls of such long-

term changes, and the relative importance of climatic

and biotic factors (Richardson et al., 2007). As we move

into a data-rich era in ecology (Luo et al., 2008), and an

era of advanced data mining (e.g., Abramowitz et al.,

2007; Moffat et al., 2010) and model uncertainty analy-

sis techniques (e.g., Braswell et al., 2005; Wang et al.,

2009; Williams et al., 2009; Keenan et al., 2011c), we are

now in a position to address such long-term questions.

Process-based models are the most commonly used

tools for the projection of long-term ecosystem function.

For terrestrial vegetation, the term ‘process-based’

incorporates a broad range of methodologies for

describing eco-physiological processes, from semi-

empirical relationships to mechanistic descriptions

based on physical laws. Such models are often shown

to reproduce observations ‘reasonably well’ (e.g., Bra-

swell et al., 2005; Williams et al., 2005). However, model

intercomparisons and model-data comparison studies

show tremendous variations among models for both

short- and long-term projections (e.g., Friedlingstein

et al., 2006; Siqueira et al., 2006; Sitch et al., 2008; Sch-

walm et al., 2010; Dietze et al., 2011; Keenan et al., in

press).

Model-data fusion (also referred to as ‘data assimila-

tion’, or ‘inverse modeling’) (Wang et al., 2009; Keenan

et al., 2011c) is a means by which to use observational

data to optimize a model and quantify model uncer-

tainty. The approach identifies combinations of model

parameters that give an equivalent model-data agree-

ment. In this way, data from different sources can be

synthesized using the model as the interpreter, inde-

pendent of parameter assumptions. Results are condi-

tional on model structure, and the information content

of observational data along with data uncertainties

(Raupach et al., 2005; Keenan et al., 2011c). For example,

model-data fusion applications of both simple (Bra-

swell et al., 2005) and complex (Medvigy et al., 2009)

models at Harvard forest acknowledged the limitation

of using only one or two data streams to constrain

model parameterization.

Even with an optimized model, results remain con-

tingent on model structure. An optimized model is

therefore not necessarily correct or even good. For

example, if the model structure is inadequate, or the

model parameters are not well constrained, an opti-

mized model can get the right answer for the wrong

reason or through a variety of unverified process com-

binations (equifinality) (Beven, 2006). It is thus impor-

tant to test the optimized model against data that was

not used for training. Another approach to assessing

model performance is to test the optimized model

using an independent ‘benchmark’. Empirical

data-mining tools such as artificial neural networks

(ANN) can serve as an excellent means by which to

benchmark model performance (Abramowitz et al.,

2007). Such data-mining tools have been shown to cap-

ture the complex response of ecosystem carbon cycling

to climatic drivers (Moffat et al., 2010). They therefore

provide an indication of how well a good (though not

necessarily best) model should be expected to perform.

Carbon uptake at Harvard forest has increased from

~200 to ~500 g C m�2 yr�1 during the 18-year period

from 1992 to 2009; around this long-term trend, there is

also interannual variability on the order of ±117 g

C m�2 yr�1 (1 SD). In this paper, we use a parsi-

monious forest carbon cycle model, embedded in a

multiple constraints Markov-chain Monte Carlo optimi-

zation framework, to examine trends and variability in

uptake. We first assess the impact of using different

data constraints on uncertainty in model performance,

both in training and test periods. An ANN approach

(Moffat et al., 2010) is then used to benchmark the opti-

mized process-based model. By examining how the use

of different constraints can reduce uncertainty, we test

whether recent changes in uptake are driven by concur-

rent trends external to the model system (exogenous

factors) or model-internal (endogenous) factors. The

impact of endogenous uncertainty in ecological fore-

casting is also assessed and compared with current

trends in carbon uptake at the Harvard forest.

Materials and methods

Site

All data used were obtained within the footprint of the eddy-

covariance tower at the Harvard Forest Environmental Mea-

surement Site (HFEMS) (http://atmos.seas.harvard.edu/lab/

hf/index.html), which is located in the New England region

of the northeastern United States (42.53 N 72.17 W, elevation

340 m) (Wofsy et al., 1993; Barford et al., 2001; Urbanski et al.,

2007). The forest within the tower footprint is largely decidu-

ous, dominated by red oak (Quercus rubra, 52% basal area),

red maple (Acer rubrum, 22% basal area), eastern hemlock

(Tsuga canadensis, 17% basal area), and a secondary presence

of white pine (Pinus strobus) and red pine (Pinus resinosa) is

also found within the tower footprint.

Data

We used 18 complete years (1992–2009) of hourly meteorologi-

cal and eddy-covariance (Wofsy et al., 1993; Goulden et al.,

1996; Barford et al., 2001; Urbanski et al., 2007) measurements

of NEE (http://atmos.seas.harvard.edu/lab/data/nigec-data.

html). Hourly gap-filled meteorological variables used include

incident photosynthetically active radiation (PAR), air temper-

ature above the canopy, soil temperature at a depth of 5 cm,
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vapor pressure deficit (VPD), and atmospheric CO2 concentra-

tion. Quality controlled hourly eddy-covariance observations

(without gap-filling) of NEE were used to optimize the ecosys-

tem model and train the ANN. Gap-filled NEE values were

only used to provide annual sums for evaluating optimized

model performance.

For ancillary data constraints, we used measurements of

leaf area index (LAI), soil organic carbon content, carbon in

roots, carbon in wood, wood carbon annual increment, obser-

ver-based estimates of bud-burst and leaf senescence, leaf lit-

ter, woody litter, and continuous and manual measurements

of soil respiration (Table 1), downloaded from the Harvard

forest data repository (http://harvardforest.fas.harvard.edu/

data/archive.html).

In addition to the ancillary data available from the Harvard

forest data repository, we used two other model constraints:

(1) annual estimates of the contribution of root respiration to

total soil respiration and (2) estimates of turnover times of soil

organic matter pools. Radiocarbon and soda-lime (in combina-

tion with trenching) based estimates of the contribution of

autotrophic respiration (Ra) to total soil respiration (Rsoil)

were obtained from Gaudinski et al. (2000), Bowden et al.

(1993), and E. Davidson (unpublished results). Bowden et al.

(1993) provided a mean annual estimate of belowground auto-

trophic respiration as roughly 33% of total annual soil respira-

tion. Gaudinski et al. (2000) and E. Davidson (unpublished

results) suggested an approximate error of roughly 50%

associated with this estimate. Although annual fluxes were

constrained to a specific proportion, Ra : Rsoil could vary

on shorter timescales. Turnover times of litter and the two

soil organic matter pools (slow, passive) were also taken

from Gaudinski et al. (2000). Microbial biomass turnover times

were estimated as 1.7 ± 1.3 years (E. Davidson unpublished

results).

Estimates of uncertainty were used for each data stream in

the optimization. Uncertainty estimates for NEE were taken

from Richardson et al. (2006), where uncertainties were shown

to follow a double-exponential distribution, with the standard

deviation of the distribution specified as a linear function of

the flux. Estimates of uncertainty due to flux gap-filling

(which apply to the annual NEE totals) were taken from Barr

et al. (2009). Soil respiration uncertainty estimates were taken

from Savage et al. (2009) and Phillips et al. (2010), where mea-

surement uncertainty increased linearly with the magnitude

of the flux. LAI sampling uncertainties were estimated as the

standard error (n = 34 plots) of the mean LAI. Litterfall sam-

pling errors were calculated as the standard error (n = 34

plots) of the annual total litterfall across all plots. Uncertainty

of carbon in wood was calculated from the standard error

(n = 34 plots, 635 trees) of the mean plot-level cumulative

increment, which averaged ~10% over all years. Two indepen-

dent measurements (Bowden et al., 1993; Gaudinski et al.,

2000) were used to constrain the initial value of total soil C

content (CSOM = 8.3 ± 1.4 kg C m�2; mean ± 1 SE), with

uncertainties estimated based on the standard deviation

between datasets. Root biomass uncertainties were estimated

from spatial variation in the samples (n = 21 plots), taken in

the control plots of the DIRT project (http://www.lsa.umich.

edu/eeb/labs/knute/DIRT/). Uncertainty estimates for the

dating of phenological events were based on the between tree

standard deviation.

Additionally, three different soil respiration data sets, two

automated and one manual, were used (Savage et al., 2009;

Phillips et al., 2010). Although seasonal cycles were similar

between the data sets, disagreement in the magnitude of the

flux was evident between the different soil respiration data

sets, reflecting high spatial variability in soil characteristics.

We included three additional scaling parameters (data

Table 1 Data sets used in this study

Measurement Frequency No. of data points Reference

Eddy-covariance Hourly 73 198 Urbanski et al. (2007) and *

Soil respiration 1 Hourly 26 430 Savage et al. (2009)

Soil respiration 2 Hourly 19 030 Phillips et al. (2010)

Soil respiration 3 Weekly 498 †

Leaf area index Monthly 51 Norman (1993), Urbanski et al. (2007), and *

Leaf litter fall Yearly 10 Urbanski et al. (2007) and *

Woody biomass Yearly 15 Jenkins et al. (2004), Urbanski et al. (2007), and *

Woody litterfall Yearly 8 Urbanski et al. (2007) and *

Root biomass 1 year 1 DIRT project*

Forest floor carbon 1 year 1 Gaudinski et al. (2000)

Budburst Yearly 15 O’Keefe (2000)*

Leaf drop Yearly 14 O’Keefe (2000)*

Soil carbon pools 3 years 3 Gaudinski et al. (2000), Magill et al. (2000),

Bowden et al. (1993)

Soil carbon turnover One 1 Gaudinski et al. (2000)

Proportion of heterotrophic

respiration in soil

One 1 Gaudinski et al. (2000)

*See data download page: http://harvardforest.fas.harvard.edu/data/archive.html.

†ftp://ftp.as.harvard.edu/pub/nigec/HU_Wofsy/hf_data/ecological_data/soilR/.
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harmonizing parameters) in the optimization process (e.g.,

van Oijen et al., 2011). These scale different chamber datasets

to account for the possibility that a particular dataset is not

representative of the mean soil respiration of the tower foot-

print. This thus harmonizes the magnitude of the different soil

respiration data streams to give an estimate of the spatial aver-

age soil respiration of the tower footprint, but then leverages

the temporal patterns in the data as model constraints.

The FöBAAR model

We developed a forest carbon cycle model that strikes a bal-

ance between parsimony and detailed process representation.

Working on an hourly timescale, FöBAAR (Forest Biomass,

Assimilation, Allocation and Respiration) calculates photosyn-

thesis from two canopy layers, and respiration from eight car-

bon pools [leaf, wood, roots, soil organic matter (microbial,

slow and passive pools), leaf litter and (during phenological

events) mobile stored carbon], using as environmental forcings

canopy air temperature (Ta), 5 cm soil temperature (Ts), photo-

synthetic active radiation (PAR), VPD, and atmospheric CO2.

The canopy in FöBAAR is described in two compartments

representing sunlit and shaded leaves (Sinclair et al., 1976;

Wang & Leuning, 1998). Intercepted radiation by sunlit or

shade leaves depends on the position of the sun, and the area

of leaf exposed to the sun based on leaf angle and the canopy’s

ellipsoidal leaf distribution (Campbell, 1986). Here, we assume

a spherical leaf angle distribution. Assimilation rates for sunlit

and shaded leaves are calculated through the commonly used

Farquhar approach (Farquhar et al., 1980; De Pury & Farquhar,

1997), with dependencies on absorbed direct and diffuse radi-

ation, air temperature, VPD, and the concentration of CO2

within the leaf inter-cellular spaces. Stomatal conductance is

calculated using the Ball–Berry model (Ball et al., 1987), cou-

pled to photosynthetic rates through the analytical solution of

the Farquhar, Ball Berry coupling (Baldocchi, 1994). Rates of

photosynthesis are dependent on the minimum between rate

of carboxylation and the proportional rate of electron trans-

port. The canopy integrated (over space and time) RuBP (ribu-

lose-1,5-bisphosphate) rate of carboxylation, Vc, and the rate of

electron transport, J, are calculated following Farquhar et al.

(1980) and De Pury & Farquhar (1997). The CO2 compensation

point and the mitochondrial respiration rate are calculated

using an Arrhenius-type equation (Bernacchi et al., 2001).

Maintenance respiration is calculated as a fraction of assimi-

lated carbon. The remaining assimilate is allocated to foliar

carbon, then to the wood and root carbon pools on a daily

time step. Mobile stored carbon relates only to foliage and is

respired only during periods of bud-burst and leaf-fall. Car-

bon allocation and canopy phenology are simulated as in the

DALEC model (Williams et al., 2005; Fox et al., 2009).

Root respiration is calculated hourly and coupled to photo-

synthesis through the direct allocation to roots. Dynamics of

soil organic matter is modeled using a three-pool approach

(microbial, slow, and passive pools) (Knorr & Kattge, 2005).

Decomposition in each pool is calculated hourly, with a pool

specific temperature dependency. Litter decomposition is also

calculated hourly, but on an air temperature basis. Litter and

root carbon are transferred to the microbial pool, then to the

slow and finally to the passive pool.

In total, 35 model parameters (including three data harmo-

nization parameters, Table 2; P40, P41, P42) and seven initial

pools were optimized, giving a total of 42 free parameters.

The inclusion of the initial biomass and soil pools in the

optimization process removed the need for a model spin-up.

Model-data fusion

An adaptive multiple constraints Markov-chain Monte Carlo

(MC3) optimization was used to optimize the process-based

model and explore model uncertainty. The algorithm uses the

Metropolis–Hastings (M-H) approach (Metropolis & Ulam,

1949; Metropolis et al., 1953; Hastings, 1970) combined with

simulated annealing (Press et al., 2007). It is loosely based on

that of Braswell et al. (2005), and it is adaptive in the sense that

the step size, which is expressed as a fraction of the initial

parameter range, is automatically adjusted to obtain a fixed

acceptance rate. Preliminary tests with synthetic data indi-

cated an acceptance rate of ~21% gave optimal efficiency

(good mixing) for the posterior exploration. Prior distributions

for each parameter given in Table 2 were assumed to be

uniform (noninformative, in a Bayesian context).

The optimization process uses a two-step approach. In the first

stage, the parameter space is explored for 100 000 iterations

using theMC3 optimization algorithm. At each iteration, the cur-

rent step size is used as the standard deviation of random draws

froma normal distributionwithmean zero, bywhich parameters

are varied around the previous accepted parameter set. Parame-

ters that fall outside the initial parameter range are ‘bounced’

back within their range. This stage identifies the optimum

parameter set by minimizing the cost function [see Eqn (2)], and

100 000 model iterations were used to identify the optimum

parameter set, as longer runs led to no improvement.

In the second stage, the parameter space is again explored,

and a parameter set is accepted if the cost function for each

data stream (defined below) passes a v2 test (at 90% confi-

dence) for acceptance/rejection (after variance normalization

based on the minimum cost function obtained (e.g., Franks

et al., 1999; Richardson et al., 2010). This approach is prefera-

ble to using the aggregate cost function, as it ensures that

model predictions are consistent with each of the individual

data streams.

The cost function quantifies the extent of model-data mis-

match using all available data (eddy-covariance, biometric,

etc.), constructed here as in Keenan et al. (2011c). Individual

data stream cost functions, ji, are calculated as the total uncer-

tainty-weighted squared data-model mismatch, averaged by

the number of observations for each data stream (Ni):

ji ¼
XNi

t¼1

yiðtÞ � piðtÞ
diðtÞ

� �2 !
=Ni; ð1Þ

where yi(t) is a data constraint at time t for data stream i and

pi(t) is the corresponding model predicted value. di(t) is the

measurement specific uncertainty. For the aggregate multi-

objective cost function, we use the average of the individual

cost functions, which can be written as follows:
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Table 2 FöBAAR model parameters and pools. Both parameters and initial pool sizes were optimized conditional on the data

constraints. The posterior 90% confidence interval for each parameter is given, based on optimization to Period 2 using all data

constraints

Id Name Definition Min Max 90% CI

Initial carbon pools (g C m�2)

P1 RC Carbon in roots 20 500 28, 205

P2 WC Carbon in wood 8 000 14 000 7 792, 10 931

P3 LitC Carbon in litter 10 1 000 146, 528

P4 SOMC slow Carbon in slow cycling soil organic matter layer 10 1 000 95, 278

P5 SOMC passive Carbon in passive cycling soil organic matter layer 1 500 12 000 1 800, 4 560

P6 MobC Mobile carbon 75 200 90, 175

Allocation and transfer parameters

P7 Af Fraction of GPP allocated to foliage 0.1 1 0.31, 0.48

P8 Ar Fraction of NPP allocated to roots 0.5 1 0.57, 0.83

P9 Lff Litterfall from foliage (Log10) �6 �0.85 �1.12, �0.88

P10 Lfw Litterfall from wood (Log10) �6 �1 �5.14, �4.88

P11 Lfr Litterfall from roots (Log10) �6 �1 �2.62, �1.88

P12 Fc_lf Fraction of Cf not transferred to mobile carbon 0.3 0.8 0.36, 0.52

P13 Lit2SOM Litter to slow SOMC transfer rate (Log10) �6 �1 �2.79, �2.09

P14 Lit2SOM Td Litter to slow SOMC temperature dependence 0.01 0.5 0.01, 0.07

P15 SOMS2SOMP Slow SOMC to passive SOMC rate 0.03 0.8 0.07, 0.77

P16 SOMS2SOMP Td Slow SOMC to passive SOMC temp. dependence 0.01 0.8 0.03, 0.55

Canopy parameters

P17 LMA Leaf mass per area (g C m�2) 50 120 81, 120

P18 MaxFol Maximum canopy carbon content (g C m�2) 150 600 180, 550

P19 Vcmax Velocity of carboxylation (umol mol�1) 60 175 90, 165

P20 Ea Vcmax Activation energy for Vcmax 58 000 75 000 58 000, 75 000

P21 Ed Vcmax Deactivation energy for Vcmax 200 000 250 000 200 000, 250 000

P22 Ea Jmax Activation energy for the electron transport rate 40 000 50 000 40 000, 50 000

P23 Ed Jmax Deactivation energy for the electron transport rate 180 000 230 000 180 000, 230 000

P24 Rd Rate of dark respiration 0.01 1.1 0.01, 1.1

P25 Q10 Rd Temperature dependence of Rd 0.4 2.8 0.45, 2.75

Phenology parameters

P26 GDD0 Day of year for growing degree day initiation 50 150 91, 117

P27 GDD1 Growing degree days for spring onset 135 300 135, 277

P28 Air Ts Leaf senescence onset mean air temperature (°C) 0 15 11, 12.4

P29 GDD2 Spring photosynthetic GDD maximum 500 1 000 660, 1 000

Respiration parameters

P30 Litd Litter respiration rate (Log10) �7 �1 �6.6, �3.7

P31 LitdTd Litter respiration temperature dependence 0.001 0.1 0.01, 0.1

P32 SOMSd Slow cycling SOMC respiration rate (Log10) �6 �1 �4.55, 3.11

P33 SOMSdTd Slow cycling SOMC temperature dependence 0.01 0.2 0.01, 0.19

P34 SOMPd Passive cycling SOMC respiration rate (Log10) �6 �1 �6.38, �5.15

P35 Rrootd Root respiration rate (Log10) �6 �1 �5.09, �3.77

P36 RrootdTd Root respiration rate temperature dependence 0.01 0.2 0.07, 0.2

P37 MobCr Mobile stored carbon respiration rate (Log10) �6 �0.5 �1.5, 0.5

P38 MobCTr Fraction of mobile transfers respired 0 0.1 0, 0.1

P39 Maintr Fraction of GPP respired for maintenance 0.1 0.5 0.1, 0.44

Scaling parameters

P40 Rsoil1 Soil respiration scaling co-efficient (data set 1) 0.5 2 0.96, 1.65

P41 Rsoil2 Soil respiration scaling co-efficient (data set 2) 0.5 2 0.62, 1.53

P42 Rsoil3 Soil respiration scaling co-efficient (data set 3) 0.5 2 0.45, 1.65
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J ¼
XM
i¼1

ji

 !
=M; ð2Þ

where M is the number of data streams used.

Thus, each individual cost function is averaged by the num-

ber of observations, and the average of the cost functions from

all data streams is taken as the total cost function. In this man-

ner, each data stream is given equal importance in the optimi-

zation (Franks et al., 1999; Barrett et al., 2005).

Model benchmarking – ANN ensemble

We used an ANN to benchmark the FöBAAR model perfor-

mance (e.g., Abramowitz et al., 2007) and characterize the cli-

matic sensitivity of ecosystem-atmosphere carbon exchange.

An ANN is an inductive modeling approach based on statisti-

cal multivariate modeling (Bishop, 1995; Rojas, 1996) by which

one can map drivers directly onto observations (e.g., Moffat

et al., 2010). The benchmarking framework used in this paper

is based on a feed-forward ANN with a sigmoid activation

function trained with a back propagation algorithm (Moffat

et al., 2010). An ensemble of six ANNs was trained on non-

gap-filled eddy-covariance carbon fluxes only. It should be

noted that the ANN is a benchmark only for short-term envi-

ronmental controls on hourly NEE, as it does not account for

lagged effects on ecosystem state or function, or long-term

changes in pool sizes.

The ANN was also used as a gap-filling tool to compare the

gap-filled eddy-covariance carbon fluxes. When used as a

gap-filling tool (e.g., Moffat et al., 2007), the ANN was trained

on each year of eddy-covariance carbon flux data separately.

Thus applied, the ANN agreed with the annual carbon flux

from the independently gap-filled data with a root mean

square error of 32 g C m�2.

Experimental set-up

We divided the 18 years of available data into three distinct

6 year periods (1992–1997; 1998–2003; 2004–2009; Fig. 2) to

perform two experiments. In the first experiment, we used the

middle period (Period 2, Fig. 1) to quantify the added benefit

of using different data streams as constraints. This involved

optimizing FöBAAR using as constraints either: (1) only

hourly NEE data, (2) hourly, monthly, and yearly NEE data,

or (3) all eddy-covariance carbon flux data (hourly, monthly,

yearly) and ancillary data (Table 1). We then assessed the opti-

mized model performance for the two periods not used for

training. The ANN was trained to the eddy-covariance carbon

flux data for the same 6 year period on which the FöBAAR

model was trained and compared with the FöBAAR model.

The second experiment was designed to test whether model

deficiencies highlighted by the first experiment could be

resolved by training the model on each period. In the second

experiment, we used all available data to optimize the

FöBAAR model on each 6 year period individually. This

allowed us to assess changes in model parameters when opti-

mized on different periods.

Finally, for each of the three approaches to constraining the

model (1, 2, and 3 above) in the first experiment, we projected

carbon stocks and fluxes to 2100, to assess the effect of each

constraint approach on the future propagation of uncertainty.

Downscaled future climate projections

For the climate change projection, we used downscaled data

(Hayhoe et al., 2007) from the regionalized projection of the

GFDL-CM global coupled climate-land model (Delworth et al.,

2006) driven with socioeconomic change scenario A1FI

(Denham KL et al., 2007). Model projections for Harvard forest

under this scenario predict an increase in atmospheric CO2 to

969 ppm by 2100 and an increase in mean annual temperature

from 7.1 to 11.9 °C.

Results

Assessing the benefit of additional constraints

We first tested the benefit of using flux and ancillary

data for constraining model projections. Here, we use

Fig. 1 Model uncertainty for NEE, GPP, Ra, and Rh, for the FöBAAR model. The FöBAAR model was constrained on data in Period 2

and tested on Periods 1 and 3. Three different approaches to constraining the model are shown: (1) using all data available (flux and

biometric, black), (2) using hourly tower measurements of NEE, and monthly and annual aggregates (dark gray), and (3) using only

hourly tower measurements of NEE (light gray). The shaded areas thus represent the confidence in model projections, without a direct

comparison to data.
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the middle six years of the time series (Period 2, Fig. 2)

to optimize the FöBAAR model and the other two peri-

ods for testing, assessing three different approaches to

constraining the model (see Materials and methods sec-

tion). When using only hourly NEE as a constraint,

uncertainty in annual mean NEE model estimates was

large (±200 g C m�2 yr�1 95% CI, Fig. 1). Particularly

large uncertainty was evident among the component

fluxes of gross primary productivity (±320 g C m�2

yr�1), autotrophic (±410 g C m�2 yr�1) and heterotro-

phic respiration (±290 g C m�2 yr�1). The use of

monthly and annual flux aggregates largely reduced

uncertainty in model estimates of annual NEE (to ±60 g

C m�2 yr�1) during both the training and test periods,

though only slightly reduced equifinality, shown in

Fig. 1 as relatively large uncertainties in the component

fluxes. Using all available data to constrain the model

only slightly reduced uncertainty for annual flux esti-

mates but gave a large reduction in uncertainty in the

responsible processes (Fig. 1). Uncertainty in modeled

fluxes in the test periods was comparable to that in the

training period for each of the constraint approaches.

FöBAAR and ANN evaluation in training and test
periods

In the following analysis, we trained both FöBAAR

using all constraints and the ANN on Period 2 using

only short-term flux constraints (Fig. 2), and tested the

models on the other two periods. When trained on Per-

iod 2, neither FöBAAR nor the ANN captured the large

increase in annual NEE during Period 3 (Fig. 3). The

mean annual NEE estimated from the gap-filled tower

data for the last 6 years of the time series (Period 3,

Fig. 2) was roughly twice that of the previous 6 year

period (Period 2, Fig. 2). In contrast, both FöBAAR and

the ANN mean annual NEE for Period 3 were compara-

ble with that of Period 2 (Fig. 2). As with all models

that do not consider dynamic vegetation, FöBAAR and

ANN predictions of NEE outside the training period

make the implicit assumption that the climatic sensitiv-

ity of ecosystem function does not change between

years. Long-term temporal trends in the residuals

between the modeled and observed annual NEE can be

interpreted as an alteration in the carbon uptake of the

ecosystem that is independent of recent changes in the

climate variables included in the model. Long-term

trends in Harvard forest mean annual uptake

[increased by ~300 g C m�2 (~150%) between Period 1

and Period 3] were thus shown to be independent of

any recent changes in climate drivers included here.

In general, when trained on Period 2, the FöBAAR

model reproduced the mean values for the ancillary

data streams, but not the interannual variability.

FöBAAR-modeled carbon in wood for Period 2 was

well simulated with an RMSE of 51 g C yr�1 (Table 3).

Mean annual wood increments were also well cap-

tured, allowing for the accurate reproduction of bio-

mass accumulation. Outside of the training period,

RMSE performance for woody biomass was reduced,

most noticeably for mean annual woody increment in

Period 3, where the model under-predicted growth.

Interannual variability in modeled wood increment did

not show a significant correlation with the observations

Fig. 2 Measured (line) and modeled (light gray area) annual

NEE with the FöBAAR model trained on data from Period 2.

Horizontal dark gray bars represent measured means for each

period.

Fig. 3 The daily NEE residuals (modeled-measured, g

C m�2 day�1) for FöBAAR and the ANN, showing the seasonal

cycle of data-model mismatch, when both models are trained on

Period 2. The residuals are shown in polar plots, where a full

circle corresponds to 1 year, and monthly intervals are repre-

sented by the initial letter of the month. The zero residual is

indicated by the inner black circle (solid line). The smoothed

line (red, solid) is a 7 day moving average mean based on all

years of data in each period.
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in any period (Table 3). For canopy processes, the sea-

sonal evolution of LAI was well captured during the

training period (r2: 0.89, RMSE: 0.49 m2 m�2). Mean

bud-burst dates were well simulated (RMSE:

4.17 days), though interannual variability was not (r2:

0.24). Mean leaf senescence was simulated with a simi-

lar accuracy (RMSE: 3.4 days) though model correlation

with inter-annual variability in senescence was low (r2:

0.35). Outside of the training period, model skill at

reproducing observations of LAI and phenology

declined (Table 3), most notably in Period 3, and in par-

ticular for inter-annual variability in leaf senescence.

The magnitude of leaf litterfall was well simulated for

the training period (RMSE: 12 g C m�2) but much less

so for Period 3 (RMSE: 51 g C m�2), and interannual

variability was poorly captured in all three periods.

For hourly daytime NEE in the training period,

FöBAAR and the ANN performed comparably (r2: 0.76,

0.74), with an equivalent RMSE (0.19). The ANN

showed better data-model agreement for the night-time

fluxes than the FöBAAR model (Table 3). Cumulative

annual fluxes show that both models tended to slightly

underestimate the total annual NEE. Neither the

FöBAAR model nor the ANN captured the high uptake

seen in 2001 (data not shown), suggesting that the

observed uptake in this year was not driven by the cli-

matic variables included in this study. The ANN resid-

uals showed no seasonal bias during the training

period, whereas the optimized FöBAAR was slightly

biased toward underestimating uptake during the

growing period, and underestimating carbon released

by the ecosystem during winter months (Fig. 3).

For the testing periods, both the ANN and the

FöBAAR model performed well for hourly NEE fluxes

during 1992–1997 (Period 1, Fig. 3), with no systematic

temporal biases (Fig. 3). During 2004–2009, FöBAAR

and the ANN both showed strong systematic biases,

but only during the growing season (Period 3, Fig. 3) in

particular during the months of June, July, August, and

September. The correlation of measured and ANN/

FöBAAR-modeled day-time NEE for the 2004–2009 per-

iod was equivalent to that of the other two periods, but

a larger bias was evident for hourly predictions which

accumulated to a large bias in the annual total

(Table 3). This shows that good correlation to short-

term fluxes does not eliminate the possibility of large

bias at longer time scales.

Model extrapolation in time

With a perfect understanding of the system, a model

trained on one period should be able to predict the

fluxes in the other periods. Experiment 1 showed that

neither model used here could do so at Harvard forest.

In Experiment 2, we calibrated the FöBAAR model to

each period individually. When calibrating FöBAAR to

all of the available data on the three individual periods,

little bias is evident for FöBAAR NEE during that

Table 3 Performance metrics for all data streams used in the FöBAAR model, and net ecosystem exchange for the ANN. See

Table 1 for a description of the data used. All nonzero r2 values are significant for P < 0.05; ns � no significant relation found

Period 1 (test) Period 2 (trained) Period 3 (test) Period 3 (trained)

r2 RMSE r2 RMSE r2 RMSE r2 RMSE

ANN

NEE day 0.77 0.17 0.74 0.19 0.76 0.22

NEE night 0.11 0.10 0.17 0.10 0.19 0.10

NEE annual ns 118.18 ns 73.40 ns 213.80

FöBAAR

NEE day 0.79 0.16 0.76 0.19 0.75 0.25 0.78 0.20

NEE night 0.09 0.11 0.15 0.11 0.10 0.11 0.14 0.11

NEE annual ns 63.23 ns 90.57 ns 298.27 ns 87.3

Soil respiration ns ns 0.90 0.68 0.71 1.17 0.70 1.08

Leaf area index 0.89 0.86 0.89 0.49 0.76 0.85 0.84 0.71

Litter fall ns ns ns 11.58 ns 50.56 ns 13.34

Woody biomass 1.00 60.15 0.96 52.93 0.99 111.44 0.99 56.08

Woody increment ns 0.01 ns 0.06 ns 0.15 ns 0.02

Bud burst 0.20 4.24 0.24 4.17 0.21 3.70 0.32 0.57

Leaf drop 0.17 5.74 0.35 3.42 0.18 3.68 0.18 3.68

FöBAAR vs. ANN

NEE day 0.76 0.18 0.76 0.18 0.71 0.21

NEE night 0.62 0.06 0.63 0.05 0.54 0.06

NEE annual ns 79.18 ns 70.58 ns 80.70
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period, but large biases are evident in the other periods

(Fig. 4). Calibrating to the whole time series thus over-

estimates annual NEE for the first period, gives low

bias in annual NEE for the middle period, and under-

estimates annual NEE for the last period. Inter-annual

variability in NEE was not captured by the model when

trained on any period. Long-term changes in estimated

modeled canopy photosynthetic potential (here Vcmax,

P19) were needed to reproduce the observations.

Reproducing the required trend in NEE required an

increase in Vcmax of ~50% over the 18 years (Fig. 5).

Vcmax co-varied strongly with the proportion of assimi-

late lost through maintenance respiration (Fig. 5). Such

parameter equifinality could explain previous findings

that models with very different Vcmax values can give

comparable estimates of canopy photosynthesis (e.g.,

Keenan et al., 2011b). Although the use of multiple con-

straints allowed for the constraining of 24 of the 42 free

model parameters, no other significant changes in

parameters could be detected between the different

periods.

Long-term changes at Harvard forest

From a carbon accounting perspective, changes in the

measured annual increment in aboveground biomass

over the 18 years (Period 1: ~100 g C m�2; Period 2:

185 g C m�2; Period 3: 220 g C m�2) do not fully

account for the observed increase in ecosystem carbon

storage (NEE). In Period 2, measured aboveground bio-

mass increment was 72% of all carbon sequestered. In

Period 3, biomass increment accounted for 42% of

observed carbon sequestered. In our model system,

which accurately reproduced the mean biomass incre-

ment for each period, the remaining increase in uptake

could only accumulate in the litter, root, or soil pools.

In the model, any increase in the root, litter, or micro-

bial pools would cause an observable increase in soil

respiration, yet no increase in soil respiration was

observed between the different periods. As the only

viable alternative, the model predicted that the remain-

ing uptake (after discounting for increases in above-

ground biomass) accumulated in the slow cycling

carbon pool at a rate of 300 g C m�2 yr�1 during Period

3. This contrasted with the accumulation rate of ~70 g

C m�2 yr�1 in Periods 1 and 2. This implies that the

reported large increase in net ecosystem carbon uptake,

if true, should be detectable in the slow cycling carbon

pool.

Ecological forecasting

Long-term model projections of future carbon cycling

and stocks (using posterior parameter distributions

from the FöBAAR model optimized on Period 2) were

strongly dependent on the data used to constrain the

model (Fig. 6). The use of short-term (hourly) NEE flux

data alone, although it gave a good fit to available

hourly NEE measurements (Table 3), led to poor con-

straint of the long-term evolution of the carbon sink-

source state of the forest. Future projections of annual

NEE were highly uncertain and ranged from ~ 600 to

�900 g C m�2 yr�1 (90% CI) in the last decade of the

century, compared with an average range of �50 to

�520 g C m�2 yr�1 (90% CI) in present day conditions

Fig. 4 The cumulative daily NEE residuals (modeled-mea-

sured, g C m�2) for FöBAAR when trained on each period indi-

vidually and tested on the other two periods. The red line

represents the mean cumulative residual for each 6-year period,

and the gray area is one standard deviation about the mean.

The dashed black line represents the zero residual.

Fig. 5 The covarying posterior distribution of Vcmax and the

proportion of gross primary productivity (GPP) respired for

maintenance, for the FöBAAR model calibrated independently

on each of the three 6-year periods (Fig. 2). Contour lines repre-

sent the mean annual GPP (g C m�2 yr�1) for a particular

combination of parameters.
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(when using only hourly NEE flux data). Largest uncer-

tainty propagated beyond 2050. Uncertainty in auto-

trophic respiration increased by ~50% by the end of the

century and uncertainty in heterotrophic respiration

doubled.

The use of long-term (monthly and annual) flux con-

straints greatly reduced future flux uncertainty. For

example uncertainty in future NEE was reduced to

within a range of �50 to �450 g C m�2 yr�1. The largest

reduction in uncertainty came from the synchronous use

of all data constraints available. The additional use of bio-

metric constraints particularly reduced endogenous

uncertainty in future projections of all carbon stocks.

With the use of all data constraints, uncertainty in projec-

tions of all future stocks and fluxes was within present

day uncertainty, with the exception of the slow cycling

carbon pools (soil organic matter and carbon in wood).

Interestingly, projected future carbon sequestration

under climate change is never predicted to increase to the

extent observed in the last 18 years at Harvard forest.

Discussion

High-frequency eddy-covariance measurements of for-

est-atmosphere carbon exchange contain a wealth of

information, which can be used to characterize an eco-

systems response to climatic drivers, and the evolution

of that response over time. When used to constrain a ter-

restrial carbon cycle model, a large improvement in pos-

terior vs. prior model performance can be achieved for

high-frequency fluxes (e.g., Medvigy et al., 2009), along

with a reduction in the posterior uncertainty of some

model parameters (e.g., Braswell et al., 2005). The annual

carbon balance of an ecosystem, however, is not an

instantaneous response to a driver, but an accumulation

of ecosystem responses to climate variability within the

year (le Maire et al., 2010). Here, we show that when

using only high-frequency measurements of NEE, small

high-frequency model biases can accumulate to give

large uncertainty in the total modeled annual carbon bal-

ance of the ecosystem over annual and inter-annual time

periods. The resulting uncertainty range is of a similar

magnitude to the range among models reported from

model inter-comparison studies (Heimann et al., 1998;

Cramer et al., 2001; Schwalm et al., 2010; Keenan et al., in

press). By incorporating information on long-term

(monthly, annual) cumulative fluxes into the model opti-

mization, we greatly reduced the uncertainty in model

estimates of the annual carbon budget of the forest in

both training and test periods.

Fig. 6 FöBAAR model projections to 2100 for carbon fluxes (top, g C m�2 yr�1) and pools (bottom, kg C m�2) from 2000 to 2100, using

posterior parameters from a model optimization using: (1) only hourly net ecosystem exchange fluxes (dark gray); (2) hourly, monthly,

and annual net ecosystem exchange fluxes (medium gray); (3) all flux and ancillary data (light gray) (Table 3). Shaded areas represent

90% confidence limits on model projections, generated by parameter sets taken from the posterior parameter distribution.

© 2012 Blackwell Publishing Ltd, Global Change Biology, 18, 2555–2569

2564 T. F . KEENAN et al.



This reduction was not as pronounced, however, for

the components of the carbon budget. When using only

eddy-covariance carbon flux data, modeled gross pri-

mary productivity and ecosystem respiration compen-

sated for each other to give the observed value for NEE.

Such equifinality (Beven, 2006) between quantities

allows for large uncertainty in both, but good model

performance for the net value of ecosystem carbon

exchange. The use of additional constraints in conjunc-

tion with eddy-covariance carbon flux data led to a

reduction in uncertainty in the component parts of NEE

during the test and training periods, if not in NEE itself.

In particular, the additional use of biometric and soil

flux constraints led to a halving of uncertainty in

heterotrophic respiration, and a large reduction in

uncertainty regarding the size of the carbon pools.

Synchronously using 15 different data streams as

constraints successfully reduced posterior uncertainty

in 24 of 42 parameters. The well-constrained nature of

the model was evidenced by the accurate simulation of

multiple compartments of the ecosystem at various dif-

ferent time scales. Previous model-data fusion efforts

have focused on using one or two constraints (with

some notable exceptions, e.g., Xu et al., 2006; Medvigy

et al., 2009; Richardson et al., 2010; Ricciuto et al., 2011;

Weng & Luo, 2011), which invariably led to a low

number of constrainable parameters (e.g., ~4 to >6
parameters, Wang et al., 2007; Knorr & Kattge, 2005).

Here, constrained parameters were typically associated

with processes for which data was available. For

instance, the soil organic matter and wood carbon ini-

tial pools were well constrained by the measurement

data, while the canopy carbon reserve pool was not

constrained, as no measurements of mobile canopy car-

bon were included. Five additional parameters, which

were not well constrained, demonstrated strong co-var-

iance with other parameters, thus giving information

as to their true distribution. Vcmax and the proportion

of recent assimilate used for maintenance respiration

serve as a good example in this study – where higher

Vcmax was compensated for by higher maintenance res-

piration (Fig. 5). It should be noted that the absolute

values of Vcmax reported here are specific to the model

used. Different assumptions regarding the distribution

of light and temperature within the canopy affect the

value of Vcmax needed to reproduce the observed

fluxes (e.g., Keenan et al., 2011b), potentially along

with the value assumed for the proportion of assimi-

late lost to maintenance respiration as shown here. The

increased use of multiple data streams in the future

will help better constrain models and aid our under-

standing of long-term processes. However, not all

additional data constraints give the same reduction in

model uncertainty (Richardson et al., 2010; Ricciuto

et al., 2011). In this study, components of ecosystem

carbon cycling most uncertain after the integration of

all available data were related to gross primary

productivity, and the timing and magnitude of above-

ground growth and maintenance respiration. Identify-

ing which additional data would better inform model

projections should be a focus of future efforts.

By testing the optimized process-based model

against the ANN, we have shown that process-based

models can reproduce observed NEE measurements as

well as data-mining tools. This shows that parsimoni-

ous model structures are sufficient to reproduce the

observed short-term variability represented in eddy-

covariance carbon flux data. It also suggests that

although eddy-covariance fluxes undoubtedly contain

more information than any other individual data con-

straint, they are not sufficient to adequately test many

aspects of more complex models (e.g., Medvigy et al.,

2009; Zaehle & Friend, 2010; Bonan et al., 2011). As in

other studies (e.g., Hanson et al., 2004; Braswell et al.,

2005; Siqueira et al., 2006; Richardson et al., 2007;

Urbanski et al., 2007; Richardson et al., 2010; Keenan et al.,

in press; but see Desai, 2010), the process-based model

failed to accurately reproduce observed inter-annual

variability in carbon cycling and biomass increments,

even within the training period. As the process-based

model here was optimized to the data, parameter error

can be discounted, leaving model structural error, bio-

tic effects, or missing drivers (e.g., diffuse radiation:

Moffat et al., 2010) as potential culprits for the poor

model performance for inter-annual variability. Lagged

effects of climate variability on ecosystem state (e.g.,

Gough et al., 2009) have been shown to affect model

performance on interannual timescales (Keenan et al.,

in press), potentially due to inaccurate model alloca-

tion structures (Gough et al., 2009). Though it has been

suggested that process-based models may effectively

reproduce inter-annual variability (Desai, 2010; but see

Keenan et al., in press), both biotic and abiotic factors

are known to affect normal between-year variability

(Richardson et al., 2007). Further work on model struc-

tural error, biotic effects, and the impact of unac-

counted for drivers should improve our ability to

accurately model interannual variability in terrestrial

carbon cycling in the future.

Eddy-covariance measurements at Harvard forest

suggest a long-term trend of increasing uptake over the

1992–2009 period, with a particularly pronounced

increase in uptake in the last 6 years. Results here sug-

gest that long-term changes evidenced by the eddy-

covariance carbon flux data are independent of recent

changes in climate variables included in this study. By

comparing the temporal distribution of model-data

residuals, we found that nonclimate driven change in
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carbon fluxes is only evident during the growing sea-

son. By comparing the posterior parameters for the

FöBAAR model optimized on three separate 6 year

periods of contrasting uptake, we show that even with

increased leaf area, substantial increases in canopy pro-

ductivity (here Vcmax) are needed to reproduce the

observed fluxes.

Although carbon in wood, leaf area and litter-fall all

exhibit increases over the past 18 years, a large propor-

tion of the estimated increased uptake is unaccounted

for in the measured carbon stocks. Our model results

suggest that the rate of accumulation of slow cycling

soil organic matter doubled in Period 3 compared with

the two earlier periods. Under that working hypothesis,

the large influx of carbon in recent years should there-

fore be detectable with an appropriate sampling inten-

sity (Fernandez et al., 1993) in soil organic matter

measurements, with largest increases in the slow

cycling soil carbon pool. Without adequate measure-

ments, our model results regarding the fate of the

sequestered carbon should not be regarded as strong

evidence, and provide but a testable hypothesis. Cur-

rent efforts to quantify age and residence times of soil

carbon with techniques such as isotopic analysis and

radiocarbon dating should aid in identifying the

ultimate fate of the sequestered carbon.

Inventory data reports an increase in the biomass of

Red Oak within the tower footprint (~20% increase over

the last 18 years), and a concurrent increase in Red Oak

leaf area. Other species in the footprint of the tower do

not show a comparable increase, with the exception of

a slight increase in understory Hemlock. Changes in

community dynamics provide one potential explana-

tion of the changes in ecosystem uptake. Increasing

understory activity has been suggested to have the

potential to explain trends (Jolly et al., 2004), through

enhanced photosynthetic uptake before the overstory

canopy has developed in spring, or after it has senesced

in autumn. Understory activity, however, is unlikely to

explain the consistent higher uptake throughout the

season as observed here. The observed increase in for-

est carbon uptake could also be due to higher atmo-

spheric CO2 levels (Cramer et al., 2001), or the

cumulative effect of nitrogen deposition. Farquhar et al.

(1980) photosynthesis model used in this study

accounts for effects of increased atmospheric carbon,

though there is significant uncertainty as to the direct

effect of carbon fertilization (e.g., Long et al., 2006).

Although nitrogen deposition at Harvard forest is 10–
20 times above historic background levels (http://

www.chronicn.unh.edu/), it remains only ~12% of

annual N mineralization (Munger et al., 1998), and con-

trol data from long-term nitrogen fertilization studies

do not report a significant increase in foliar nitrogen

(data not shown). It should be noted that there is no

evidence to suggest that any of the processes discussed

above could, in isolation, realistically lead to a ~50%
increase in the photosynthetic potential of the canopy.

Future projections from terrestrial models have been

reported to diverge greatly under climate change (Frie-

dlingstein et al., 2006; Heimann & Reichstein, 2008).

Such divergence could be explained by process mispa-

rameterization, or misspecification. We show that using

short-term high-frequency eddy-covariance carbon flux

data alone to inform model parameterization allows for

divergent future projections, even with good model

performance when tested against current data. Parame-

ter misspecification could therefore potentially explain

the different future trajectories reported by different

models. We show that using orthogonal constraints can

reduce this divergence, leading to a better data-

informed model projection. Using long-term flux data

in combination with biometric data greatly reduced

endogenous (internal to the model system) uncertainty

in predictions of how net carbon sequestration at

Harvard forest would respond to future climate

change. Considerable uncertainty in the components of

NEE remained, due to equifinality between gross

photosynthesis and autotrophic respiration.

Although process-based models should theoretically

be more reliable than empirical models under future

climate scenarios (see Keenan et al., 2011a for discus-

sion), not all processes are fully understood (e.g., spe-

cies adaptation, down-regulation, nitrogen cycling).

Such exogenous uncertainty is shown here to be large,

with the optimized model incapable of reproducing the

observed long-term trend in carbon cycling at Harvard

forest without temporal changes in parameters. This

suggests that, when the model is sufficiently informed

by data, model process representation still represents a

large source of uncertainty for making future projec-

tions, making the statistical uncertainty in ecological

forecasts an underestimate of the true uncertainty.

Models of forest carbon cycling, such as the one used

here, have been coupled with earth-system models to

project terrestrial carbon sinks and sources (e.g., Sitch

et al., 2008) and feedbacks to climate change in the 21st

century (Cox et al., 2000; Fung et al., 2005; Friedling-

stein et al., 2006). Results have been incorporated into

the assessment reports of the Intergovernmental Panel

on Climate Change (Denham KL et al., 2007) to guide

mitigation efforts by governments and public (Solomon

et al., 2007), though models diverge largely when pro-

jecting the future responses to climate change (Frie-

dlingstein et al., 2006; Denham KL et al., 2007). None of

the terrestrial carbon cycle models used, however, are

directly informed by data. Here, we have shown how

this can lead to overconfidence in individual model
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projections. Model intercomparison studies that use

data-informed models would be a significant step

toward rigorously assessing errors due to model pro-

cess representation, and improving our ability to pro-

vide policy-actionable predictions of future carbon

cycle responses to change.
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Bousquet P, Peylin P, Ciais P, Le Quéré C, Friedlingstein P, Tans PP (2000) Regional

changes in carbon dioxide fluxes of land and oceans since 1980. Science, 290,

1342–7.

Bowden RD, Nadelhoffer KJ, Boone RD, Melillo J, Garrison JB (1993) Contributions of

aboveground litter, belowground litter, and root respiration to total soil respira-

tion in a temperate mixed hardwood forest. Canadian Journal of Forest Research, 23,

1402–1407.

Braswell BH, Sacks WJ, Linder E, Schimel DS (2005) Estimating diurnal to annual eco-

system parameters by synthesis of a carbon flux model with eddy covariance net

ecosystem exchange observations. Global Change Biology, 11, 335–355, doi: 10.1111/

j.1365-2486.2005.00897.x.

Campbell GS (1986) Extinction coefficients for radiation in plant canopies calculated

using an ellipsoidal inclination angle distribution. Agricultural and Forest Meteorol-

ogy, 36, 317–321.

Clark JS et al. (2001) Ecological forecasts: an emerging imperative. Science, 293, 657–

60, doi: 10.1126/science.293.5530.657.

Cox PM, Betts R, Jones CD, Spall S, Totterdell IJ (2000) Acceleration of global warm-

ing due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–7,

doi: 10.1038/35041539.

Cramer W et al. (2001) Global response of terrestrial ecosystem structure and function

to CO2 and climate change: results from six dynamic global vegetation models.

Global Change Biology, 7, 357–373, doi: 10.1046/j.1365-2486.2001.00383.x.

Denham KL et al. (2007) The Physical Science Basis. In: climate change (eds Solomon S,

Qin D, Manning M, Marquis M, Averyt A, Tignor M, LeRoy Miller H, Chen Z),

pp. 501–586. Cambridge University Press, Cambridge, UK.

De Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to

canopies without the errors of big-leaf models. Plant, Cell and Environment, 20,

537–557, doi: 10.1111/j.1365-3040.1997.00094.x.

Delworth TL et al. (2006) GFDL’s CM2 global coupled climate models. Part I: formu-

lation and simulation characteristics. Journal of Climate, 19, 643–674.

Desai AR (2010) Climatic and phenological controls on coherent regional interannual

variability of carbon dioxide flux in a heterogeneous landscape. Journal of Geophysi-

cal Research, 115, 1–13, doi: 10.1029/2010JG001423.

Dietze M et al. (2011) Characterizing the performance of ecosystem models across

time scales: a spectral analysis of the North American Carbon Program site-level

synthesis. Journal of Geophysical Research, 116, G04029, doi: 10.1029/2011JG001661.

Dragoni D, Schmid HP, Wayson CA, Potter H, Grimmond CSB, Randolph JC (2011)

Evidence of increased net ecosystem productivity associated with a longer vege-

tated season in a deciduous forest in south-central Indiana, USA. Global Change

Biology, 17, 886–897, doi: 10.1111/j.1365-2486.2010.02281.x.

Fahey TJ et al. (2005) The biogeochemistry of carbon at Hubbard Brook. Biogeochemis-

try, 75, 109–176, doi: 10.1007/s10533-004-6321-y.

Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosyn-

thetic CO2 assimilation in leaves of C3 species. Planta, 149, 78–90.

Fernandez IJ, Rustad L, Lawrence GB (1993) Estimating total soil mass, nutrient con-

tent, andtrace metals in soils under a low elevation spruce-fir forest. Canadian Jour-

nal of Soil Science, 73, 317–328.

Fox A et al. (2009) The REFLEX project: comparing different algorithms and imple-

mentations for the inversion of a terrestrial ecosystem model against eddy covari-

ance data. Agricultural and Forest Meteorology, 149, 1597–1615, doi: 10.1016/j.

agrformet.2009.05.002.

Franks SW, Beven KJ, Gash JHC (1999) Multi-objective conditioning of a simple SVAT

model.Hydrology and Earth System Sciences, 3, 477–488, doi: 10.5194/hess-3-477-1999.

Friedlingstein P et al. (2006) Climate-carbon cycle feedback analysis: results from the

(CMIP)-M-4 model intercomparison. Journal of Climate, 19, 3337–3353.

Fung I, Doney SC, Lindsay K, John J (2005) Evolution of carbon sinks in a changing

climate. Proceedings of the National Academy of Sciences, USA, 102, 11201–11206.

Gaudinski JB, Trumbore SE, Eric A, Zheng S (2000) Soil carbon cycling in a temperate

forest: radiocarbon-based estimates of residence times, sequestration rates and

partitioning of fluxes. Biogeochemistry, 51, 33–69.

Gough CM, Flower CE, Vogel CS, Dragoni D, Curtis PS (2009) Whole-ecosystem

labile carbon production in a north temperate deciduous forest. Agricultural and

Forest Meteorology, 149, 1531–1540, doi: 10.1016/j.agrformet.2009.04.006.

Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Measurements of car-

bon sequestration by long-term eddy covariance: methods and a critical evaluation

of accuracy. Global Change Biology, 2, 169–182.

Hanson PJ et al. (2004) Oak forest carbon and water simulations: model intercompari-

sons and evaluations against independent data. Ecological Monographs, 74, 443–489,

doi: 10.1890/03-4049.

Hastings WK (1970) Monte-Carlo sampling methods using Markov chains and their

applications. Biometrika, 57, 97.

Hayhoe K, Wake C, Anderson B et al. (2007) Regional climate change projections for

the Northeast USA. Mitigation and Adaptation Strategies for Global Change, 13, 425–

436, doi: 10.1007/s11027-007-9133-2.

© 2012 Blackwell Publishing Ltd, Global Change Biology, 18, 2555–2569

DATA-INFORMED MODELING OF FOREST C-CYCLING 2567



Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate

feedbacks. Nature, 451, 289–292, doi: 10.1038/nature06591.

Heimann M et al. (1998) Evaluation of terrestrial carbon cycle models through simula-

tions of the seasonal cycle of atmospheric first results of a model intercomparison

study. Global Biogeochemical Cycles, 12, 1–24.

Jenkins JC, Chojnacky DC, Health LS, Birosey RA (2004) Comprehensive database of

diameter of diameter-based biomass regressions for North American tree species: General

Technical Report. NE-319. U.S. Department of Agriculture, Forest Service, North-

eastern Research Station, Newtown Square, PA, 45 pp.

Jolly WM, Nemani R, Running SW (2004) Enhancement of understory productivity

by asynchronous phenology with overstory competitors in a temperate deciduous

forest. Tree Physiology, 24, 1069–71.

Keenan T, Maria Serra J, Lloret F, Ninyerola M, Sabate S (2011a) Predicting the future

of forests in the Mediterranean under climate change, with niche- and

process-based models: CO2 matters! Global Change Biology, 17, 565–579, doi:

10.1111/j.1365-2486.2010.02254.x.
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