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The past and future of modeling forest dynamics:
from growth and yield curves to forest landscape models
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Abstract

Context Quantitative models of forest dynamics

have followed a progression toward methods with

increased detail, complexity, and spatial extent.

Objectives We highlight milestones in the develop-

ment of forest dynamics models and identify future

research and application opportunities.

Methods We reviewed milestones in the evolution of

forest dynamics models from the 1930s to the present

with emphasis on forest growth and yield models and

forest landscape models We combined past trends with

emerging issues to identify future needs.

Results Historically, capacity to model forest

dynamics at tree, stand, and landscape scales was

constrained by available data for model calibration
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and validation; computing capacity; model applica-

bility to real-world problems; and ability to integrate

biological, social, and economic drivers of change. As

computing and data resources improved, a new class

of spatially explicit forest landscape models emerged.

Conclusions We are at a point of great opportunity in

development and application of forest dynamics mod-

els. Past limitations in computing capacity and in data

suitable for model calibration or evaluation are becom-

ing less restrictive. Forest landscape models, in partic-

ular, are ready to transition to a central role supporting

forest management, planning, and policy decisions.

Recommendations Transitioning forest landscape

models to a central role in applied decision making

will require greater attention to evaluating perfor-

mance; building application support staffs; expanding

the included drivers of change, and incorporating

metrics for social and economic inputs and outputs.

Keywords Process model � Individual-tree model �
Gap model � Model validation � Ecosystem services �
LANDIS � TreeMig � Forest Vegetation Simulator

Introduction

Forecasting forest change is essential to forest man-

agement, and over the past century the suite of

quantitative modeling tools available to aid forest

management decision-making has become increas-

ingly sophisticated, quantitative, spatially explicit, and

inclusive of multiple drivers of forest change (Moser

1980; Mladenoff and Baker 1999; Mladenoff 2005).

The development and application of forest dynamics

models has historically been constrained by the

availability of computing capacity, observational data

on forest change, and supporting software (e.g. for

geographic information systems or GIS) (e.g. Moser

1980; Ek et al. 1988; Leary 1988; Mladenoff 2004;

Risser and Iverson 2013). However, in recent decades

model developers and users benefited from remarkable

advances in modeling approaches, computing capac-

ity, the body of observational data from which to

calibrate and test predictive models, and knowledge

about impacts of exogenous disturbances on forests.

These advances removed some barriers to modeling

forest dynamics, but they have also increased expec-

tations for model access, performance, and relevance

to emerging issues. Growing interest in issues other

than timber production has demanded greater use of

spatially explicit modelling methods that permit

landscape-scale analyses in addition to tree- and

stand-scale considerations that were emphasized in

the early decades of forest dynamics modelling.

We briefly summarize progress andmilestones in the

evolution of forest growth and yield models and forest

landscape models from the 1930s to the present, with

emphasis on howprogress has been linked to computing

capacity and data availability.We subsequently identify

specific actions needed to support future forest land-

scape model development and application.

Forest growth and yield models

The initial impetus for modeling forest dynamics was to

estimate timber yields over time and thereby improve

efficiency of timber production. The development of

variable density yield equations (MacKinney et al.

1937) initiated the era of statistical (or empirical)

growth and yield modeling. Regression models appli-

cable to disturbed stands predicted future yield (or

future periodic growth) as a function of current stand

conditions and time. However, early regression models

were limited to those that could be fit using a

mechanical calculator and calibration data describing

forest change over time were in short supply (Fig. 1).

Subsequent forest dynamics models incorporated

systems of differential equations describing stand

growth over time as the first derivative of yield over

time for even-aged and uneven-aged stands (e.g.

Clutter 1963; Moser and Hall 1969). Increased avail-

ability of detailed forest inventory data supported the

development of complex systems of differential or

difference equations that simultaneously modeled

change in individual components of stand growth

(Beers 1962; Moser 1974) including ingrowth, growth

of surviving trees, mortality, and harvest. During the

same period, diameter distribution models were

developed that modeled change over time in the

cFig. 1 Time line of milestones in computing capacity, forest

dynamics model development, and forest inventory data

collection. ‘‘Moores’ Law’’ (Moore 1965), backed by 40 years

of empirical evidence, suggests the number of transistors on an

integrated circuit (i.e. a computer chip) will double about every

2 years, leading to exponential increases in computing capacity

SourcesWikipedia contributors (2016a, b) for transistor counts;

personal communication with Dennis May, US Forest Service,

for forest inventory milestones 18 Feb 2016
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parameters of a diameter distribution (e.g. the Weibull

distribution) and provided great flexibility in summa-

rizing products by size class (Clutter and Bennett

1965; Burkhart 1971; Bailey and Dell 1973).

Empirical, individual-tree-based growth models

flourished in the 1970s and 1980s with advent of the

personal computer. They were intuitive in predicting

growth and survival over time for individual trees on

inventory plots, and cumulative change for the stands

and landscapes represented by the inventory plots (e.g.

Arney 1972; Stage 1973; Ek and Monserud 1974;

Leary 1979), but they did not model spatially explicit

landscape processes such as spread of fire or patho-

gens. Early development of empirical individual-tree-

based growth models was constrained by limited data

and computing capacity, but since the mid 1980s

empirical individual-tree, distance-independent mod-

els exemplified by the forest vegetation simulator

(FVS) have gradually become the dominant method-

ology for making operational, site-specific estimates

of future forest change over time, with or without

harvesting, fire, or climate effects (Crookston et al.

2010; US Forest Service 2016b). The notable excep-

tion is for planted conifers, where stand-scale models

continue to dominate applications (e.g. Burkhart and

Tomé 2012).

FVS model variants have been calibrated and

validated for most regions of the U.S. and are readily

linked to forest inventory databases to set initial forest

conditions and to enable localized model calibration

and validation. That process has been facilitated by a

permanent U.S. Forest Service support staff serving

private and public land managers. The outcome is a

mature modeling technology that is documented,

validated, integrated with forest inventory systems,

and routinely applied to support on-the-ground forest

planning and silvicultural decisions. Outputs of pro-

jected forest conditions include tabular and graphical

summaries as well as three-dimensional visualizations.

There has been a propensity to increase the spatial

extent of applications of growth and yield models and

to integrate landscape-scale processes (e.g. seed

dispersal, spread of wildfire, insects, diseases, climate

change) and management for non-timber forest

attributes (e.g. wildlife habitat over time) (Dixon

2002; Rebain 2010). Initially, such efforts were

hampered by a lack of field inventory data or remotely

sensed data describing initial forest conditions seam-

lessly across a landscape, lack of software suitable for

manipulating geographically referenced data at the

landscape scale, and lack of computing capacity to

model landscape-scale, spatially explicit changes for

landscapes thousands of hectares in extent. To some

degree, those limitations have been overcome for

modeling landscapes encompassing thousands of

hectares (Crookston and Stage 1991), but not for

applications spanning millions of hectares as is the

case with some of the forest landscape models

discussed in the following section.

Spatially interactive forest landscape models

Forest landscape models (FLMs) simulate forest stand

dynamics in conjunction with interactive forest land-

scape processes in a spatially explicit (i.e., mapped)

framework (Scheller and Mladenoff 2007; He 2008).

Although many types of forest dynamic models can be

spatially explicit, FLMs additionally model forest

landscape processes—spatial and stochastic processes

that include seed dispersal; natural disturbances such

as fire spread, windstorms, avalanches, insect and

disease propagation; and human influences such as

forest harvesting, fuel treatment, and climate change.

FLMs divide the simulated landscape into sites (or

points or raster cells; the smallest unit of spatial

resolution) with forest dynamics simulated for each

site, and spatially interactive forest landscape pro-

cesses simulated over all or a subset of sites. With

current technology, sites typically range from 0.1 to

300 ha in size for landscapes ranging from 105 to 109

ha in extent. By simultaneously modelling site-scale

forest dynamics and landscape processes across

mapped forest landscapes, FLMs introduced a new

paradigm for modeling forest dynamics.

Because the computation loads for FLMs increase

nonlinearly with increasing landscape size and com-

plexity, FLMs typically simplify site-scale processes

(e.g. competition at the tree level) in order to make

landscape scenario analyses possible within the con-

fines of available computational capabilities (Mlade-

noff and Baker 1999; Mladenoff 2004). In contrast to

forest growth and yield models that track the species,

number, and size of each tree on site or stand, early

FLMs did not explicitly simulate site-scale forest

dynamics. Rather, variables from simulated forest

landscape processes were used as a surrogate for those

dynamics. The elapsed time since last fire, for
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example, was used to represent the age of trees on a

site or the amount of accumulated fuel (Baker et al.

1991; Li et al. 1997; Cary 1998). The original

LANDIS model (Mladenoff et al. 1996; Mladenoff

and He 1999) used species age cohorts as a measure of

forest structure and site occupancy. Recent FLMs

incorporate more quantitative information at each site

(e.g. seed number, total biomass, number of trees by

age or height class, or in some cases individual trees

with explicit positions), thus increasing the detail of

site-scale forest dynamics. Alternative FLMs differ in

how they balance the level of detail for each site and/or

the complexity of modeled forest landscape processes

given practical constraints on computing and the

mechanisms needed to simulate robustly the processes

of interest. The following are specific examples.

TreeMig tracks species-specific seed densities in

the seedbank and tree population densities in height

classes at each cell (Lischke et al. 2006). It captures

dynamic within-stand heterogeneity in terms of

species composition and vertical and horizontal stand

structure. Besides modeling recruitment, growth,

mortality and light competition as in gap-models,

TreeMig includes processes and interactions essen-

tial for modeling landscape dynamics: seed produc-

tion, seed density regulation, and seed dispersal.

Thus, the model simulates patterns and shifts in

species composition over time. Climate is a primary

driver and basic model processes are formulated as

temperature and precipitation dependent. Distur-

bances are simulated as generic, spatially-random

mortality.

LANDIS II simulates biomass for each species age

cohort (Scheller et al. 2007). The ratio of actual to

potential biomass for a cell mimics resource avail-

ability (growing space), and assumes species-age

cohort biomass implicitly incorporates density infor-

mation. Potential biomass in LANDIS II is derived

empirically (Smith et al. 2006) or derived from

species-specific maximum aboveground net primary

productivity estimated using the stand-level ecophys-

iological model PnET II (Aber et al. 1995). Recently,

De Bruijn et al. (2014) developed a more mechanistic

approach to simulating growth within LANDIS-II by

embedding algorithms of PnET-II to simulate growth

more mechanistically as a competition for light and

water to support photosynthesis. As discussed in later

sections, the practice of embedding stand-scale mod-

els to drive the site-scale forest dynamics within a

FLM is a natural progression that is facilitated by

advances in computing capacity.

LANDCLIM tracks the number of trees and

biomass by species and age cohort (Schumacher

et al. 2004). It is unique in introducing gap model

dynamics into simulated site-scale dynamics by

including the interactions of abiotic variables (soil

water, and climate) and biotic variables (tree size).

Stand-scale resource competition is modeled as shad-

ing and by a growth- and density-dependent mortality

function based on site biomass relative to maximum

potential biomass. Additionally, large-scale distur-

bances such as wind throw, wildfires, and bark-beetle

infestations are modeled. Results are evaluated in

terms of ecosystem services, e.g. protection against

natural biohazards (Bugmann et al. 2014).

iLand represents a novel approach to integrate

functional, structural, and spatial processes and their

interactions through an individual-based model frame-

work (Seidl et al. 2012). The model tracks the location

and attributes of each individual tree within a cell. The

approach is coupled with physiology-based resource

use modeling, including competition for light via an

upscaled shade-surface, and is embedded in a robust

scaling framework to address landscape-level dynam-

ics. iLand represents a FLM with exceptional detail at

the individual cell level, but applications are therefore

limited to relatively small areas.

LANDIS Pro models density and basal area for

each species-by-age class cohort to track forest

composition and structure for each cell (Wang et al.

2013). The model simulates population dynamics with

competition intensity for each site quantified by the

relative proportion of the total growing space that is

occupied, with growing space estimates based on

Reineke’s (1933) stand density index. LANDIS PRO

is designed to be compatible with standard U.S. Forest

Service inventory data; consequently, detailed inven-

tory data can be directly utilized for model initializa-

tion, calibration, and validation (Wang et al. 2014b).

Unlike other FLMs, climate does not directly drive

tree growth in LANDIS Pro. Rather LANDIS Pro can

be coupled with an ecophysiological model, LIN-

KAGES (Dijak et al. 2017), which uses daily weather

data as a driver and simulates biogeochemical cycling

and tree species growth and survival response to

climate and soils variables. Relative growth and

survival values by ecoregion and climate scenario

are used to establish relative success rates for species
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establishment and maximum growing space (Wang

et al. 2014a).

A note about process-based models of forest

dynamics

We recognize that in addition to the growth and yield

models and forest landscape models briefly summa-

rized above, there are numerous other pioneering

methodologies for modeling forest dynamics. Most

notable are process-based models that focus on

knowledge of plant demographic and biogeochemistry

to model the underlying processes that drive forest

change. This class of models has been actively

developed since the 1970s (Botkin et al. 1972a, b;

Shugart 1984; Landsberg et al. 1991; Tiktak and van

Grinsven 1995; Landsberg 2003). The models often

couple plant carbon budgets to environmental dri-

vers—commonly climatic variables (e.g. temperature)

and/or biogeochemical processes (e.g. nitrogen cycle)

(Battaglia and Sands 1998). Such coupling not only

enables process-based models to simulate forest

responses to variations in environmental conditions

(e.g. interannual precipitation variation) but also

makes them valuable tools to study forest responses

to novel conditions (e.g. future climate change) for

which there can be no empirical observations of forest

response (Bugmann 2001; Johnsen et al. 2001;

Landsberg 2003; Medlyn et al. 2011).

Process-based models can be generally classified

as simple demographic, simple physiological, com-

plex physiological, and hybrid empirical-physiolog-

ical models based on the complexity of ecological

processes represented (Jin et al. 2016). As indicated

in the previous section, process-based models such as

simple physiological model PNET-II (Aber and

Federer 1992; Aber et al. 1995) have been incorpo-

rated into the LANDIS-II FLM framework to model

site-scale carbon budgets based on relationships

between environmental and biological variables and

the photosynthetic rate. And likewise the hybrid

empirical-physiological model LINKAGES-II (Pas-

tor and Post 1986; Wullschleger et al. 2003; Dijak

et al. 2017) has been applied to estimate differential

site-scale species dynamics in response to climate

change in the process of calibrating LANDIS Pro to

model forest response to alternative climate scenarios

(Wang et al. 2016).

The following sections, while recognizing the

contributions of process-based models individually

and coupled with forest landscape models, principally

focus on actions necessary to make forest landscape

models better suited to supporting applied forest

management decision-making with reference to the

historical evolution of applied forest growth and yield

models.

Progress and limitations in modeling forest

dynamics

If we view developments in forest dynamics modeling

over the past 80 years, we appear to be in a time of

great abundance and opportunity. Data suitable for

model calibration, validation, or implementation have

never been more abundant and accessible from field

inventories and remote sensing platforms. Computing

capacity available for model development or applica-

tion has expanded exponentially over the past three

decades (Fig. 1). Software for model calibration,

testing, and implementation is sophisticated and

widely available. However, these assets come with

the caveat of increased expectations for the capability

and relevance of forest dynamics models, particularly

forest landscape models, to address real and complex

on-the-ground forest management and planning prob-

lems. Meeting those expectations requires effort to

expand the reach of contemporary FLMs from tools

used principally for scientific inquiry to tools essential

for applied forest management and planning. FLMs

have a potentially large role to play in assessing long-

term, large-scale cumulative effects of forest manage-

ment actions and inactions including information

requirements for the National Environmental Policy

Act (NEPA) (Council on Environmental Quality

1997) and the Endangered Species Act (US Fish and

Wildlife Service 1973).

If we look at the current situation with regard to

FLM development, testing and application, there are

many parallels with the situation for individual-tree-

based growth and yield models 30 years ago (e.g.

Stage 1973; Leary 1979; Wykoff et al. 1982; Miner

et al. 1988; Mladenoff and Baker 1999; US Forest

Service 2016b). Specifically, the scientific basis of

FLMs has been well described in the literature, and the

models have been calibrated for several geographic

regions. In a few specific situations, models have been
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validated using observed data, but comparisons among

alternative models are rare. Data describing initial

forest conditions necessary for FLM implementation

are widely available, but those data often must be

transformed with additional assumptions to match

requirements of a given model. Computing resources

required for single, simple model applications are

sufficient, yet for a better model calibration (e.g. by

Bayesian approaches) or optimization of management,

computing time is still limiting. Most FLMs lack user-

friendly interfaces and have a steep learning curve.

Technical support for model applications is mainly ad

hoc by model developers rather than offered by

permanent support teams. The utility of the models

to support practical forest management and policy

decisions has been demonstrated (Leefers et al. 2003;

Zollner et al. 2005; Rittenhouse et al. 2011; Brandt

et al. 2014; Butler et al. 2015; Gustafson et al. 2016),

but there is an ongoing push for the models to

incorporate more site-scale detail about forest condi-

tions and to accommodate larger geographic regions.

Linkages to models that use modeled forest conditions

to quantify forest-associated products and services

such as wildlife habitat, biodiversity, or fire effects are

straightforward in concept but not widely imple-

mented (Millspaugh and Thompson 2009; LeBrun

et al. 2017). And finally, there is need to incorporate

socio-economic factors that drive forest change and

those that respond to forest change.

In contrast to the similarities listed above, there are

some notable ways that the FLMs differ from

individual-tree-based growth and yield models of

30 years ago. More time and technical skill is needed

to prepare mapped input data layers for FLM imple-

mentation and for analysis of results. It is more

difficult to calibrate and validate FLMs that address

large-scale forest change scenarios including tree

species succession and exogenous disturbances such

as climate change. FLM applications to address

contemporary forest management and policy issues

demand massive computing resources. Although the

exponential rate at which computing capacity is

increasing (Fig. 1) generally outstrips the rate at

which FLM applications demand increased computing

resources, this trend will reach a limit (Powell 2008),

and even access to unlimited computing resources

would not suddenly remove the barriers to new,

creative FLM applications. Moreover, the expectation

of expanding computing and data resources can be

figured into plans for future FLM development

(Mladenoff 2005).

As the science behind individual-tree-based growth

and yield models matured in the 1970s and 1980s,

permanent support staffs were established for model

maintenance, improvement, and user training. That

has been instrumental in widespread application of

those models to support forest planning decisions and

evaluation of silvicultural alternatives. Significant

new developments by those research and development

staffs focused on improving the user interface, train-

ing, automated calibration and validation, linkages to

other forest-associated resources (e.g. fuels, carbon,

wildlife), and modelling the effects of biological and

anthropogenic disturbances including climate change

(Dixon 2002; Crookston et al. 2010).

The future of forest landscape dynamics modeling

Given the historical context and current capabilities in

forest dynamics modelling, several opportunities

emerge, that if addressed, would result in significant

progress in application of forest landscape models. The

focus here is on forest landscape models because

collectively that class ofmodels appears poised tomake

the transition from research tools to applied tools

suitable for addressing complex forest management and

policy issues. The following sections provide additional

detail on several such needs and opportunities.

Evaluate forest landscape model performance

Model evaluation is the process of determining if a model

is suitable for its intended use and specifically if it is

preferable to alternative forecasting methods that could

be used instead (Johnsen et al. 2001). Thus, evaluation is

context-specific and relative. Evaluation includes spatial

and temporal validation of model forecasts, verification

that computer code and embedded empirical or stochastic

models are operating as intended, and assessment of the

user interface (Buchman and Shifley 1983). Significant

shortcomings in any of those three areas limit the utility of

FLMs in applied decision-support.

Validate model forecasts

Validation or ‘‘demonstration that a model within its

domain of applicability possesses a satisfactory range
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of accuracy consistent with its intended application’’

(Rykiel 1996) has been especially problematic with

FLMs. Rykiel (1996) suggests that data-intensive

validation is not always a requirement for models used

exclusively for research, but it is for operational

models and in the latter context requires a comparison

of modeled forest landscape change with observed

changes for a comparable real forest system. Such

comparisons are complicated by the large spatial scale

(thousands to millions of hectares) and long temporal

scales (a century or more) at which FLMs are typically

applied. Practical validation methods for operational

FLMs include quantitative comparisons with long-

term field studies, cross-model validation comparing

FLM estimates with estimates from other models, and

evaluation by expert opinion panels.

Recent work has demonstrated that FLMs can be

validated through quantitative comparisons of long-

term FLM forecasts against independent series of

spatiotemporal data (e.g. Wang et al. 2014a;

Gustafson et al. 2015). However, the capacity to

do so is limited by the availability of forest

landscape monitoring data that are large-scale,

long-term and spatially explicit, but such data are

increasingly available. For example, in the last

decade data from 250,000 remeasured U.S. forest

inventory plots have been placed in public data-

bases, and in the future data describing forest

change will continue to accumulate at a comparable

rate (US Forest Service 2016a). Experimental or

observational data spanning two or three decades

are increasingly available for short-term FLM

validation (e.g. LANDCLIM, Schumacher et al.

2004; iLand, Seidl et al. 2012; LANDIS PRO, Wang

et al. 2014b). Data sources include results from

long-term, landscape-scale field experiments (Shi-

fley and Brookshire 2000; Adams et al. 2008;

Purdue University 2016); time series of repeated

remote sensing measurements (e.g. LIDAR, Land-

sat) that capture the seasonal to interannual vege-

tation changes as well as detect contemporary

disturbance events and trends (e.g. the UMD Global

Forest Change product, Hansen et al. 2013, 2017;

LandTrendr, Kennedy et al. 2017); and data from

observatory networks (e.g. FLUXNET, Oak Ridge

National Lab 2017; NEON, National Science Foun-

dation 2017) that provide continuous measures of

the hourly to yearly soil–plant–atmosphere CO2,

water, and energy exchanges for different vegeta-

tion types.

Validation of long-term FLM vegetation change

forecasts (e.g. 5 decades or more) is constrained to

established theories of forest dynamics (e.g. Reineke

1933; Yoda et al. 1963; Gingrich 1967; Oliver and

Larson 1996; Leary 1997; Wang et al. 2014b) and

limited empirical studies (e.g. TreeMig, Lischke et al.

2006; LANDIS II, Scheller et al. 2007). Old-growth

forest monitoring studies provide references for forest

composition and structure of late-successional forests

(under a past climate and without anthropogenic

disturbances).

When there are no suitable field data against which

to validate FLM estimates of forest change (for

example when modelling future forest dynamics under

a changing climate) cross-model validation is desir-

able. For example, cross-model comparison is one of

the approaches used to validate climate forecasting

within the Intergovernmental Panel on Climate

Change (IPCC) and has proven effective in building

confidence in forecasts of future climate trends and

variation for a given future greenhouse gas emissions

scenario (Gates et al. 1992). In the same manner,

results from FLMs can be compared to results from

alternative modelling techniques. A recent example by

Iverson et al. (2016) compares estimated future

changes in the spatial distribution of trees under

alternative climate scenarios for a species distribution

model (Tree Atlas: Iverson et al. 1999), a hybrid

empirical-physiological model (LINKAGES; Pastor

and Post 1986; Wullschleger et al. 2003; Dijak et al.

2017), and a forest landscape model (LANDIS PRO;

Wang et al. 2013; Wang et al. 2014a). Model

comparisons such as this one do not indicate if model

estimates are correct, but they can boost confidence in

model forecasts when different modeling approaches

produce similar results.

The focus of FLM validation is on comparisons of

aggregate measures of landscape condition over time

for future disturbance scenarios. For a given scenario,

FLM forecasts are intended to be representative of

future landscape conditions. Stochasticity in real and

modeled disturbance processes (e.g. for wind, fire,

harvest) renders meaningless any site-to-site compar-

isons of actual and modeled forest change. Reality is

but one possible outcome of the inherently stochastic

processes that shape landscapes, so it is most
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informative to compare the statistical distribution of

landscape metrics between real and modeled land-

scapes. For example, Wang et al. (2014b) compared

the predicted density and basal area by species group

from LANDIS PRO outputs against data from Forest

Inventory and Analysis plots (US Forest Service

2016a) at 1988, 1993, 2003, and 2008 for a landscape

in Northern Arkansas (Fig. 2). The comparisons were

stratified by land types to reduce the variation due to

exogenous forces (e.g., soil, terrain, climate).

Although only mean values are shown in Fig. 2, the

distribution of values around each mean was used to

statistically test differences between predicted and

observed estimates.

Incorporation of expert panels in the model review

process subjects the modeling process and predictions

to scrutiny based on experiences outside those of the

model developers. Even when data-intensive or cross-

model validation methods are used, expert panels

should be part of the continuous model validation

process. Local experts act as a coarse filter to identify

model behaviors and outputs that appear unreasonable

in a given ecosystem. This is particularly important

when the intent is for FLM applications to guide forest

management decisions (e.g. Leefers et al. 2003;

Zollner et al. 2005; Rittenhouse et al. 2011; Brandt

et al. 2014; Butler et al. 2015; Gustafson et al. 2016).

Model forecasts are unlikely to be accepted by

managers if they cannot be reconciled with long-term

observations of forest-change by local experts having

decades of field experience.

Verify computer code

As software for model implementation becomes more

sophisticated and complex, model verification—en-

suring the computer code performs as intended—

becomes increasingly important and difficult. Modern

software engineering techniques that include iterative

unit testing can almost completely eliminate coding

errors in simulation models (e.g. Scheller et al. 2010).

Modular programming with interchangeable program

Fig. 2 Comparison of predicted mean density and basal area by

species group from LANDIS PRO outputs against observed

mean values from Forest Inventory and Analysis plots (US

Forest Service 2016a) at 1988, 1993, 2003 and 2008 for a

landscape in Northern Arkansas. From Wang et al. (2014b).

Open bars are modeled estimates; filled bars are observed

values from a field inventory
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components can also help in this regard (Baker and

Mladenoff 1999). Verification for FLMs requires

establishing benchmark data suitable for identifying

intended and unintended consequences of program-

ming changes or of new components added to the

model. Verification can also lead to an upscaling of the

model (Lischke et al. 2007), e.g. by aggregating

individuals to populations (Lischke et al. 1998), by

converting random disturbances to survival probabil-

ities (Scherstjanoi et al. 2013), or by simulating local

processes only in representative cells in a landscape

(Nabel 2015), which yields simpler and more efficient

models.

Assess the application environment

The FLM application environment includes all the

practical considerations that make a model easy or

difficult for a user to apply. The situation for every

user is different, but there are common questions and

issues (Buchman and Shifley 1983). For example, is

there formal or informal user support? What is the

state of model documentation? What prerequisite

skills are required by a user (e.g. programming or

GIS skills)? How easy is the model to obtain, install

and maintain? Are data requirements for model

application compatible with the data the user has

available? Does the user interface provide error

checking for erroneous input data, and can the system

estimate values for missing data? Is model output in a

format that that makes spatial and non-spatial

attributes of modeled scenarios easy to examine?

For practical applications, the FLM application

environment is often the first consideration of a

potential user. If the application environment is not

compatible with technology, skills and data available

to a potential user, the model will not be applied. The

quality of user-support is an important part of the

application environment and is discussed in the

following section.

Provide technical support for model application

Increased application of FLMs for forest planning,

management, and policy analysis will require attention

to the user interface and other aspects of the applica-

tion environment pertaining to ease of use. Developers

of LANDIS II, for example, have put considerable

effort into developing a user interface to visualize and

evaluate model output (Gustafson et al. 2016), training

materials, and networking among users. Although the

complexity of FLMs may always require a high level

of technical skill to initiate an analysis of future

scenarios, the technical work could be simplified with

permanent support staff dedicated to streamlined

model implementation for contemporary forest man-

agement and policy problems. This approach—al-

ready proven successful for forest growth and yield

model applications (US Forest Service 2016b)—can

assist with distribution of software, improvement of a

model’s user interface, training, preparation of input

data layers, summary and interpretation of results,

model evaluation, and applications to inform forest

planning, management, and policy decisions. At a

larger spatial scale, a collaborative modelling

approach has been applied with the Community Earth

System Model (2016) to provide institutional-level

support for an open-arm developer/user community to

facilitate model verification in terms of coding and

revision, and technical support for modeling applica-

tions. An expanded system of ongoing user support is

required if FLMs are to make the transition from

research tools to applied tools that can be routinely

used for scenario analyses supporting long-term,

large-scale forest landscape policy analysis, planning,

and management.

Invest in shared efforts for model initialization

Developing the input files for FLM applications is

time consuming. It requires preparing maps that

describe site conditions (e.g. soils, landforms), land

use, current vegetation, management areas, and

disturbance probabilities (e.g. fire, harvest). In many

situations, vegetation data are not available for

initializing across a landscape the tree attributes

required by a model, such as number of trees in height

classes per cell and species (e.g. Lischke et al. 2006).

In such cases, other observations and assumptions

(e.g. remote sensing data, nearest neighbor imputa-

tion) must be applied to estimate initial landscape

variables.

Our rule of thumb for FLMs is that about 60% of the

effort goes into setup of the input files and disturbance

scenarios, about 5% goes to actually running the

modeled scenarios, another 15% goes to rerunning the

models to rectify errors in the data or assumptions, and

20% goes to evaluating the results and deriving other
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forest-associated attributes (e.g. habitat quality for

select wildlife species). There are economies of scale

when using large standardized data sets such as public

forest inventory data, remotely sensed imagery, topo-

graphic data, and soils data to describe initial condi-

tions for each site on a large forest landscape (e.g.

Dijak 2013; Duveneusck et al. 2015). New FLM

applications would be facilitated if the required input

data layers for large landscapes (e.g. countries, states,

ecoregions, all National Forest holdings) were initial-

ized in their entirety for use with one or more FLM and

shared in the public domain.

Evaluate the utility of combining established

stand-scale models with FLMs

The line is becoming blurred between FLMs with

great site-scale detail and stand-scale models that

can be applied to all forest stands on a given

landscape. Exponential increases over time in com-

puting capabilities (Fig. 1) have eased limitations

on the level of detail that can be included and

processed by a FLM for each site on a forest

landscape. Likewise, for stand-scale process models

or growth and yield models expanded computing

resources have enabled development of techniques

to estimate forest change over time simultaneously

for multiple stands on a given landscape. Linking a

FLM directly to a stand-scale growth and yield

model or a process model for site-scale estimates of

forest change is an intuitive next step. Already a

variant of the LANDIS-II FLM uses the PnET-II

ecophysiological model to estimate site-scale

change in biomass for each time step (Gustafson

et al. 2015). As computing capacity continues to

increase, it is likely that developers will find it

efficient to link detailed stand-scale process-based

models (e.g. PnET (Aber and Federer 1992; Aber

et al. 1995), LINKAGES (Pastor and Post 1986;

Wullschleger et al. 2003), ED (Moorcroft et al.

2001; Medvigy et al. 2009)) or empirical models

(e.g. FVS, US Forest Service 2016b) to FLMs to

handle site-scale dynamics. This will increase site-

scale detail carried in the FLM and it will inevitably

force additional evaluations of model performance

for FLMs as well as for the embedded stand-scale

models. In the long run, such linkages will increase

consistency in modeled dynamics across tree, stand

and landscape spatial scales.

Develop FLMs as a framework for integrating

knowledge of ecosystem services and human

dimensions

As FLMs evolve to carry more detail about each site

and as computing capacity becomes less restrictive, it

becomes efficient to link other attributes to FLM

scenarios over time. Linking forest products and

services such as fuels, carbon, protection against

rockfall and avalanches, and wildlife habitat suitabil-

ity to FLMs has already been demonstrated (e.g.

Gustafson et al. 2004; He et al. 2004; Larson et al.

2004; Zollner et al. 2005; Shifley et al. 2006; Elkin

et al. 2013; Brandt et al. 2014; Zurbriggen et al. 2014;

Butler et al. 2015). In most cases, ecosystem values

and services are estimated after the fact from predicted

changes to the forest landscape (loose coupling), and

consequently opportunities for interactive coupling of

multiple natural and human systems with integrated

feedback loops (tight coupling) are not yet fully

realized (but see, for example, Zurbriggen et al. 2014

and De Jager et al. 2016). The following sections

discuss opportunities for integrating wildlife, hydrol-

ogy and socio-economic models into FLMs.

Forest-associated wildlife

There is great interest in modeling forest-associated

wildlife resources as a function of anticipated future

forest attributes. Metrics of wildlife resources parallel

those used for trees in forest models, including species

habitat suitability, occurrence, abundance, population

viability, and community-level attributes such as

richness and diversity (Larson et al. 2009). Progress

in wildlife modeling has followed a similar course to

that of forest dynamics models and evolved from non-

spatial models that utilize plot level forest measures to

spatial models mapping abundance or viability at high

resolutions over large areas based on remotely sensed

data (Millspaugh and Thompson 2009).

Wildlife habitat suitability models were originally

developed for use with field measurements of habitat

attributes at the scale of a plot or management unit (US

Fish and Wildlife Service 1981), but have since been

adapted for application at landscape to regional scales

through use of GIS (Donovan et al. 1987; Riitters et al.

1997; Dijak and Rittenhouse 2009) and applied with

forecasts from forest dynamics models (Li et al. 2000;

Marzluff et al. 2002; Larson et al. 2004). Wildlife
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habitat suitability models can be developed with

knowledge from a variety of sources (empirical,

expert opinion, or theoretical) and this flexibility has

allowed researchers to match them with outputs from

alternative forest dynamics models, including FLMs.

Application of statistically derived empirical habitat

models of occurrence or abundance to outputs from

forest dynamics has been more limited, partially

because there is often a mismatch in the variables

and scale of inference of the two models. LeBrun et al.

(2017) fit Bayesian hierarchical models to North

American Breeding Bird Survey data from the Mid-

western U.S. and used them to predict bird abundance

under management and climate change scenarios

simulated with the forest landscape model LANDIS

PRO; they discuss some of the issues with matching

empirical abundance models with a simulation model.

Forecasting wildlife species population trajectories

and viability (rather than habitat suitability) as a

function of forest dynamics is perhaps the most

ambitious and complex goal for wildlife modeling;

however, it is often the most useful way to assess

future wildlife responses to alternative forest manage-

ment scenarios. Population dynamics for wildlife

species can be simulated using population matrix

models in which demographic variables such as

productivity, survival and carrying capacity are a

function of modeled landscape attributes. Dynamic

landscape metapopulation models are frameworks

linking dynamic population models to dynamic land-

scape models (Akçakaya and Brook 2009; Bekessy

et al. 2009). For example, ECOLECON (Liu 1993)

links an individual-based wildlife population simula-

tion with a forest growth and yield subroutine in a

spatially explicit landscape (Liu et al. 1995). Akça-

kaya et al. (2004) linked a forest landscape model,

LANDIS (He et al. 2005), with a wildlife metapop-

ulation model, RAMAS GIS (Akçakaya 2006) to

create RAMAS Landscape (Applied Biomathematics,

Setauket, New York). Alternatively, wildlife popula-

tion models can be loosely coupled with forest

dynamic models by periodically updating model

population parameters to reflect forest changes; Lar-

son et al. (2004) modeled the viability of ovenbird

(Seiurus aurocapillus) populations in Missouri using

LANDIS and RAMAS GIS separately.

Ongoing research on hierarchical approaches to

wildlife modeling is improving and accounting for

uncertainties from different stages in a modeling

framework, such as an animal abundance model and

dynamic landscape model (LeBrun et al. 2017).

Advancement in integrated wildlife population mod-

els and state-space models provide hierarchical

approaches to simultaneously estimating demographic

parameters from observation data and predicting

responses to ecological processes (Schaub and Abadi

2011; Hostler and Chandler 2015). However, we are

aware of no examples that link these models with a

dynamic landscape model. We believe more realisti-

cally addressing uncertainties in dynamic population

and landscape modes is important because of the

increased use of structured decision making to

formally address uncertainty in the decision process.

To date, outputs from FLMs have been used to

estimate wildlife populations and wildlife habitat

suitability, but estimates of wildlife abundance have

not been applied reciprocally to model wildlife

impacts on forest change. Wildlife herbivory is a case

in point. In some regions of the eastern United States,

browsing by white-tailed deer (Odocoileus virgini-

anus) diminishes tree reproduction success differen-

tially by species (Tilghman 1989). Tight coupling of

FLMs and wildlife population models will be neces-

sary to address that interaction by incorporating deer

browsing pressure in modeled forest reproduction

dynamics (De Jager et al. 2016). That particular

interaction is further complicated by the socio-eco-

nomic drivers of hunting regulations and deer harvests

that also affect browsing pressure.

Water

The condition and proportion of forest cover on a

landscape are tightly correlated with the quantity and

quality of water produced from the landscape. Linking

hydrology models to FLMs provides a mechanism to

examine how natural forest changes, anthropogenic

land use change, or alternative scenarios of forest

management are likely to affect water yield, water

quality, and avalanche risk.

In forested landscapes, changes in water yield are

linked to changes in forest condition. Reductions in

basal area or leaf area index at stand and landscape

scales are known to increase water yield, but the

amount and duration of increases depend on climatic

conditions and the rate of forest regrowth (Hibbert

1967; Hornbeck et al. 1995; Brown et al. 2005). Paired

catchment studies indicate that reductions of at least
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15% of basal area are required for a detectable increase

in water yield (Stednick 1996). Such changes com-

monly result from timber harvesting but may also be

caused by other natural or anthropogenic disturbances.

Prescribed fires for fuelwood reduction treatments

have relatively little impact on water yield (Elliot

2010), and the impact of wildfires depends on their

severity and extent. At the stand scale, increases in

water yield due to timber harvest and other silvicul-

tural procedures that reduce basal area are well

documented (Troendle and Leaf 1980), but they are

often short-lived. Increased water yield following

basal area reductions rarely persist longer than

10 years without subsequent treatments (Hornbeck

et al. 1995). Forest landscape model scenarios that

track tree age, size, density, basal area, stocking or

biomass can be linked to such hydrologic relationships

and used to estimate the associated landscape-scale

change in water yield over time. Such forest land-

scape/hydrology models should ideally include the

full feedback (tight coupling) among soil, water, and

forest dynamics, because not only does the forest

structure influence hydrology, but also the water

supply affects forest development and structure. This

creates a feedback with the potential to dampen the

effects of dry climates (Lischke and Zierl 2002).

In contrast to fluctuations in water yield associated

with forest management practices, increases in water

yield are permanent when forest land is converted to a

non-forest land use category, and those increases are

usually accompanied by a reduction in water quality.

On the other hand, newly established forests due to land

abandonment or afforestation can decrease water yield

from these areas (Schattan et al. 2013). Thus, effective

modeling of water yield and quality in association with

an FLM must account for anticipated changes in land

use. The proportion of forest cover is an important

indicator of water quality in a given watershed; high

water quality is associated with a high proportion of

forest cover. Increases in agricultural, urban, or indus-

trial land uses are associated with increased stream

temperatures, sediments, nutrients, pesticides, and other

pollutants (Tavernia et al. 2016). Thus, forest landscape

models–particularly when linked to land use models

that track area changes among land-use classes—

provide a mechanism to tie future land management

scenarios to water quality as well as water quantity.

Forest landscape models that incorporate alternative

climate scenarios, forest management scenarios, and

land use scenarios are well suited to modeling water

yield information in a manner that integrates socio-

economic and biophysical changes at the landscape

scale, e.g. by the Water Supply and Stress Index (Sun

et al. 2008; Tavernia et al. 2013).

Water in another aggregate state, namely as snow-

avalanches, can affect people living in mountainous

areas. Avalanches are linked to forests because forests

can impede avalanche release depending on their

cover, grade, structure and density. Using forest

landscapes in the Swiss Alps generated by the

LANDCLIM FLM for different climate change sce-

narios as input to an avalanche release model showed

decreased protection against avalanche release at

nearly all elevations. Protection is expected to increase

only above the current timberline, because with

climate change new forest cover is expected to become

established there (Elkin et al. 2013). Forests are

destroyed by avalanches, which leads to a positive

feedback (more avalanches—less forest—more ava-

lanches), so Zurbriggen (2013) and Zurbriggen et al.

(2014) coupled the FLM TreeMig with an improved

avalanche release model and an avalanche flowmodel.

Their simulations showed that closing the feedback

loop produced more plausible results in terms of

avalanche release probability and future landscape

conditions than simulations without the full coupling.

Socio-economic drivers of forest change

Using output from FLMs to model the current and future

economic forest landscape in terms of timing and location

of future forest products, employment, and industrial

output is intuitive, but using alternative economic fore-

casts to drive harvest scenarios within a FLM remains

unrealized opportunity. Future challenges include a

tighter coupling of FLMs with anticipated anthropogenic

impacts such as land use change (Wear 2011; Sohl et al.

2014; Thompson et al. 2014, 2016), population dynamics,

consumer preferences for forest products and ecosystem

services, and other social dimensions. Those steps will

likely create an opportunity (or necessity) to expand

existing forest landscape models to a new generation of

all-lands landscape models that encompass agricultural

and urban lands in addition to rural forest land.

Landscape Ecol (2017) 32:1307–1325 1319

123



Conclusions

We are at a point of great opportunity in development

and application of forest dynamics models. When

viewed across 80 years of history, there were periods

when forest modeling was limited by availability of

computing resources, suitable data for calibration or

implementation, or supporting statistical or GIS

software. Now those limitations appear less daunting

than the challenges of (a) utilizing the available data

and technology for increased applications of forest

dynamics models, and (b) routinely applying the best

available forest modeling science to support decision-

making.

Forest landscape models, in particular, are at a

turning point. Supported by more than two decades of

prior research and development, FLMs are ready to

make the transition from use primarily for research

studies to a central role in supporting forest manage-

ment, planning, and policy decisions. Success in that

transition will require greater attention to calibrating

models for new conditions; validating model perfor-

mance; building support staff for model applications;

investing in data processing to support model appli-

cations; expanding the suite of included natural and

anthropogenic drivers and feedbacks of change; and

incorporating metrics for social and economic inputs

and outputs. Greater attention to FLM applications

does not diminish the need for ongoing research, but it

may sharpen the focus of future research by high-

lighting important limitations and opportunities that

require attention.
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