Harvard Forest Data Archive HF092-01

Data File:

Name = hf092-01-hydraulic.csv
Description = hydraulic data
Rows = 25 Columns = 27
MD5 checksum = 2511c91d10aeb1164725f84751f205cf

Variables:

date = date sample was analyzed
p2norm.resis = resistance of water flow from petiole 1 to petiole 2
 normalized by leaf area of leaf #2. (MPa/kg/sec)*Area (m2) (number)
p2rllld = resistance of water flow from petiole 1 to petiole 2
 normalized by leaf #2 area and distance between the two petioles
 (MPa/kg/sec)*Area (m2)/distance (m) (number)
p2norm.conduct = conductance of water flow from petiole 1 to petiole
 2 normalized by leaf area of leaf#2 (mmol/s/MPa/m2) (number)
p2kllld = conductance of water flow from petiole 1 to petiole 2
 normalized by leaf #2 area and distance between the two petioles
 (mmol/s/MPa/m) (number)
p3norm.resis = resistance of water flow from petiole 1 to petiole 3
 normalized by leaf area of leaf #3 (MPa/kg/sec)*Area (m2) (number)
p3rllld = resistance of water flow from petiole 1 to petiole 3
 normalized by leaf #3 area and distance between the two petioles
 (MPa/kg/sec)*Area (m2)/distance (m) (number)
p3norm.conduct = conductance of water flow from petiole 1 to petiole
 3 normalized by leaf area of leaf#3 (mmol/s/MPa/m2) (number)
p3kllld = conductance of water flow from petiole 1 to petiole 3
 normalized by leaf #3 area and distance between the two petioles
 (mmol/s/MPa/m) (number)
p4norm.resis = resistance of water flow from petiole 1 to petiole 4
 normalized by leaf area of leaf #4 (MPa/kg/sec)*Area (m2) (number)
p4rllld = resistance of water flow from petiole 1 to petiole 4
 normalized by leaf #4 area and distance between the two petioles
 (MPa/kg/sec)*Area (m2)/distance (m) (number)
p4norm.conduct = conductance of water flow from petiole 1 to petiole
 4 normalized by leaf area of leaf#4 (mmol/s/MPa/m2) (number)
p4kllld = conductance of water flow from petiole 1 to petiole 4
 normalized by leaf #4 area and distance between the two petioles
 (mmol/s/MPa/m) (number)
p5norm.resis = resistance of water flow from petiole 1 to petiole 5
 normalized by leaf area of leaf #5 (MPa/kg/sec)*Area (m2) (number)
p5rllld = resistance of water flow from petiole 1 to petiole 5
 normalized by leaf #5 area and distance between the two petioles.
 (MPa/kg/sec)*Area (m2)/distance (m) (number)
p5norm.conduct = conductance of water flow from petiole 1 to petiole
 5 normalized by leaf area of leaf#5 (mmol/s/MPa/m2) (number)
p5kllld = conductance of water flow from petiole 1 to petiole 5
 normalized by leaf #5 area and distance between the two petioles
 (mmol/s/MPa/m) (number)
p6norm.resis = resistance of water flow from petiole 1 to petiole 6 normalized by leaf area of leaf #6 (MPa/kg/sec)*Area (m2) (number)
p6.rlld = resistance of water flow from petiole 1 to petiole 6 normalized by leaf #6 area and distance between the two petioles (MPa/kg/sec)*Area (m2)/distance (m) (number)
p6norm.conduct = conductance of water flow from petiole 1 to petiole 6 normalized by leaf area of leaf #6 (mmol/s/MPa/m2) (number)
k6rlld = conductance of water flow from petiole 1 to petiole 6 normalized by leaf #6 area and distance between the two petioles (mmol/s/MPa/m) (number)
p2dye = percent of xylem traces entering petiole 2 with dye when Safranin dye is applied through petiole 1 (dimensionless)
p3dye = percent of xylem traces entering petiole 3 with dye when Safranin dye is applied through petiole 1 (dimensionless)
p4dye = percent of xylem traces entering petiole 4 with dye when Safranin dye is applied through petiole 1 (dimensionless)
p5dye = percent of xylem traces entering petiole 5 with dye when Safranin dye is applied through petiole 1 (dimensionless)
p6dye = percent of xylem traces entering petiole 6 with dye when Safranin dye is applied through petiole 1 (dimensionless)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Min</th>
<th>Median</th>
<th>Mean</th>
<th>Max</th>
<th>NAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>2002-06-27</td>
<td>2002-07-29</td>
<td>2002-07-25</td>
<td>2002-08-16</td>
<td>0</td>
</tr>
<tr>
<td>p2norm.resis</td>
<td>1722.161</td>
<td>6368.777</td>
<td>11125.109</td>
<td>47639.134</td>
<td>2</td>
</tr>
<tr>
<td>p2rlld</td>
<td>18154</td>
<td>138029</td>
<td>243996</td>
<td>1190978</td>
<td>2</td>
</tr>
<tr>
<td>p2norm.condu</td>
<td>1.166</td>
<td>8.723</td>
<td>10.404</td>
<td>32.259</td>
<td>2</td>
</tr>
<tr>
<td>p2klld</td>
<td>0.047</td>
<td>0.402</td>
<td>0.668</td>
<td>3.060</td>
<td>2</td>
</tr>
<tr>
<td>p3norm.resis</td>
<td>1295.624</td>
<td>6255.538</td>
<td>9206.800</td>
<td>34624.720</td>
<td>0</td>
</tr>
<tr>
<td>p3rlld</td>
<td>13195.703</td>
<td>51577.136</td>
<td>106038.542</td>
<td>692494.410</td>
<td>0</td>
</tr>
<tr>
<td>p3norm.condu</td>
<td>1.605</td>
<td>8.881</td>
<td>13.196</td>
<td>42.879</td>
<td>0</td>
</tr>
<tr>
<td>p3klld</td>
<td>0.080</td>
<td>1.077</td>
<td>1.389</td>
<td>4.210</td>
<td>0</td>
</tr>
<tr>
<td>p4norm.resis</td>
<td>1539.863</td>
<td>5027.560</td>
<td>8806.550</td>
<td>41350.204</td>
<td>0</td>
</tr>
<tr>
<td>p4rlld</td>
<td>8853.267</td>
<td>45851.642</td>
<td>93951.686</td>
<td>827004.083</td>
<td>0</td>
</tr>
<tr>
<td>p4norm.condu</td>
<td>1.344</td>
<td>11.050</td>
<td>13.039</td>
<td>36.078</td>
<td>0</td>
</tr>
<tr>
<td>p4klld</td>
<td>0.067</td>
<td>1.212</td>
<td>1.724</td>
<td>6.275</td>
<td>0</td>
</tr>
<tr>
<td>p5norm.resis</td>
<td>1908.461</td>
<td>6538.202</td>
<td>9593.137</td>
<td>38065.433</td>
<td>0</td>
</tr>
<tr>
<td>p5rlld</td>
<td>8091.476</td>
<td>36286.063</td>
<td>67382.021</td>
<td>364624.503</td>
<td>0</td>
</tr>
<tr>
<td>p5norm.condu</td>
<td>1.459</td>
<td>8.497</td>
<td>11.368</td>
<td>29.110</td>
<td>0</td>
</tr>
<tr>
<td>p5klld</td>
<td>0.152</td>
<td>1.531</td>
<td>2.160</td>
<td>6.866</td>
<td>0</td>
</tr>
<tr>
<td>p6norm.resis</td>
<td>1559.134</td>
<td>5579.184</td>
<td>9601.001</td>
<td>56290.612</td>
<td>0</td>
</tr>
<tr>
<td>p6.rlld</td>
<td>5848.972</td>
<td>22867.125</td>
<td>75571.605</td>
<td>866009.408</td>
<td>0</td>
</tr>
<tr>
<td>p6norm.condu</td>
<td>0.987</td>
<td>9.958</td>
<td>12.913</td>
<td>35.632</td>
<td>0</td>
</tr>
<tr>
<td>k6rlld</td>
<td>0.064</td>
<td>2.429</td>
<td>2.564</td>
<td>9.498</td>
<td>0</td>
</tr>
<tr>
<td>p2dye</td>
<td>0.000</td>
<td>0.452</td>
<td>0.484</td>
<td>1.000</td>
<td>19</td>
</tr>
<tr>
<td>p3dye</td>
<td>0.174</td>
<td>0.667</td>
<td>0.696</td>
<td>1.000</td>
<td>19</td>
</tr>
<tr>
<td>p4dye</td>
<td>0.667</td>
<td>0.928</td>
<td>0.865</td>
<td>1.000</td>
<td>19</td>
</tr>
<tr>
<td>p5dye</td>
<td>0.000</td>
<td>0.548</td>
<td>0.572</td>
<td>1.000</td>
<td>19</td>
</tr>
<tr>
<td>p6dye</td>
<td>0.000</td>
<td>1.000</td>
<td>0.778</td>
<td>1.000</td>
<td>19</td>
</tr>
</tbody>
</table>
HF092–01 Plot 3

row

p3klld

p4norm.resis

p4rlld

p4norm.conduct

p4klld
HF092–01 Plot 7

- **row**
- **p2dye**
- **p3dye**
- **p4dye**
- **p5dye**
- **p6dye**