Harvard Forest Data Archive HF113-24

Data File:

Name = hf113-24-hf-thermal.csv
Description = HF ant thermal tolerance
Rows = 232 Columns = 9
MD5 checksum = 19f9b7c8a6c565a94ccbb3ba82876fc

Variables:

thermal.tolerance = temperature at which ant lost muscle coordination or died (celsius)
length = body length, quantified as Weber's length (see Brown WL (1953) Revisionary studies in the ant tribe Dacetini. Am Midl Nat 50:1-137) (millimeter)
net.water.loss = grams water lost during thermal tolerance assay (gram)
per.water.loss = percent water lost during thermal tolerance assay (dimensionless)
twc = total water content, calculated as ((Live mass − Dry mass) × 100) / Live mass (see Schilman PE, Lighton JRB, Holway DA (2007) Water balance in the Argentine ant (Linepithema humile) compared with five common native ant species from southern California. Physiol Entomol 32 (1):1-7.) (dimensionless)
cwc = critical water content, calculated as ((Mass at death − Dry Mass) × 100) / Live mass (see Schilman PE, Lighton JRB, Holway DA (2007) Water balance in the Argentine ant (Linepithema humile) compared with five common native ant species from southern California. Physiol Entomol 32 (1):1-7. (dimensionless)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Min</th>
<th>Median</th>
<th>Mean</th>
<th>Max</th>
<th>NAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>thermal.tole</td>
<td>36.000</td>
<td>40.000</td>
<td>39.437</td>
<td>44.000</td>
<td>1</td>
</tr>
<tr>
<td>length</td>
<td>1.000</td>
<td>3.250</td>
<td>3.596</td>
<td>8.800</td>
<td>8</td>
</tr>
<tr>
<td>net.water.lo</td>
<td>0.418</td>
<td>1.515</td>
<td>3.866</td>
<td>25.286</td>
<td>120</td>
</tr>
<tr>
<td>per.water.lo</td>
<td>0.600</td>
<td>13.360</td>
<td>14.275</td>
<td>35.470</td>
<td>120</td>
</tr>
<tr>
<td>twc</td>
<td>52.707</td>
<td>68.723</td>
<td>67.224</td>
<td>85.532</td>
<td>120</td>
</tr>
<tr>
<td>cwc</td>
<td>35.784</td>
<td>52.765</td>
<td>53.270</td>
<td>84.232</td>
<td>120</td>
</tr>
</tbody>
</table>
HF113–24 Plot 1

- row
- thermal.tolerance
- length
- net.water.loss
- per.water.loss
- twc