Harvard Forest Data Archive HF126-03

Data File:

Name = hf126-03-height-crown.csv
Description = tree height and crown
Rows = 109 Columns = 18
MD5 checksum = 0ade696fc1b572c9dbb3427d8b7a13a0

Variables:

xcoord = the Cartesian coordinate identifying the location of the
tree along the north-south axis of the plot (in meters; range is 30-60) (meter)
ycoord = the Cartesian coordinate identifying the location of the
tree along the east-west axis of the plot (in meters; range is 30-60) (meter)
dbh = diameter breast height (1.3 meters), measured in centimeters
using a dbh tape (centimeter)
distance = distance in meters from the tree at which the height and
crown depth measurements were taken (meter)
heightpercenttop = the height percent to the top of the tree,
measured using a clinometer (number)
heightpercentbase = the height percent to the base of the tree,
measured using a clinometer (number)
crowndepthpercenttop = the height percent to the top of the live
crown, measured from the same position as the height percent, also using
the clinometer (number)
crowndepthpercentbottom = the height percent to the bottom of the
live crown, measured from the same position as the height percent,
also using the clinometer (number)
majoraxis = the length, in meters, of the crown diameter at its
largest point (determined by visual inspection), measured with a 50 meter
tape (meter)
minoraxis = the length, in meters, of the crown diameter at its
smallest point (determined by visual inspection), measured with a 50 meter
tape (meter)
height = the height (in meters) of the tree, calculated from the
height percent and the distance at which that was measured =
(distance*height percent top)/100)-((distance*height percent base)/100) (meter)
crowndepth = length of live crown in meters, using crown depth
percentages, and the distance at which those were measured =((distance*crown
depth percent top)/100)-((distance*crown depth percent bottom)/100)
(meter)
meancrowndiameter = the average of the major and minor axes of the
crown diameter = (major axis + minor axis)/2 (meter)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Min</th>
<th>Median</th>
<th>Mean</th>
<th>Max</th>
<th>NAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>xcoord</td>
<td>30.891</td>
<td>45.218</td>
<td>45.754</td>
<td>59.665</td>
<td>0</td>
</tr>
<tr>
<td>ycoord</td>
<td>30.979</td>
<td>45.766</td>
<td>45.645</td>
<td>59.157</td>
<td>0</td>
</tr>
<tr>
<td>dbh</td>
<td>5.500</td>
<td>28.500</td>
<td>31.308</td>
<td>79.500</td>
<td>0</td>
</tr>
<tr>
<td>distance</td>
<td>11.000</td>
<td>23.800</td>
<td>24.066</td>
<td>36.000</td>
<td>0</td>
</tr>
<tr>
<td>heightpercen</td>
<td>20.000</td>
<td>84.000</td>
<td>78.486</td>
<td>119.000</td>
<td>0</td>
</tr>
<tr>
<td>heightpercen</td>
<td>-46.000</td>
<td>-11.000</td>
<td>-11.376</td>
<td>11.000</td>
<td>0</td>
</tr>
<tr>
<td>crowndepthpe</td>
<td>20.000</td>
<td>84.000</td>
<td>78.486</td>
<td>119.000</td>
<td>0</td>
</tr>
<tr>
<td>crowndepthpe</td>
<td>8.000</td>
<td>43.000</td>
<td>41.991</td>
<td>88.000</td>
<td>0</td>
</tr>
<tr>
<td>majoraxis</td>
<td>1.800</td>
<td>5.400</td>
<td>6.235</td>
<td>14.300</td>
<td>0</td>
</tr>
<tr>
<td>minoraxis</td>
<td>1.100</td>
<td>4.200</td>
<td>4.893</td>
<td>14.000</td>
<td>0</td>
</tr>
<tr>
<td>height</td>
<td>6.370</td>
<td>22.242</td>
<td>21.945</td>
<td>37.816</td>
<td>0</td>
</tr>
<tr>
<td>crowndepth</td>
<td>0.864</td>
<td>9.030</td>
<td>9.010</td>
<td>22.425</td>
<td>0</td>
</tr>
<tr>
<td>meancrowndia</td>
<td>1.700</td>
<td>4.800</td>
<td>5.564</td>
<td>14.150</td>
<td>0</td>
</tr>
</tbody>
</table>