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We assess the significance of high-frequency variability of envi-
ronmental parameters (sunlight, precipitation, temperature) for
the structure and function of terrestrial ecosystems under current
and future climate. We examine the influence of hourly, daily, and
monthly variance using the Ecosystem Demography model version
2 in conjunction with the long-term record of carbon fluxes
measured at Harvard Forest. We find that fluctuations of sunlight
and precipitation are strongly and nonlinearly coupled to ecosys-
tem function, with effects that accumulate through annual and
decadal timescales. Increasing variability in sunlight and precipi-
tation leads to lower rates of carbon sequestration and favors
broad-leaved deciduous trees over conifers. Temperature variabil-
ity has only minor impacts by comparison. We also find that
projected changes in sunlight and precipitation variability have
important implications for carbon storage and ecosystem structure
and composition. Based on Intergovernmental Panel on Climate
Change model estimates for changes in high-frequency meteoro-
logical variability over the next 100 years, we expect that terres-
trial ecosystems will be affected by changes in variability almost as
much as by changes in mean climate. We conclude that terrestrial
ecosystems are highly sensitive to high-frequency meteorological
variability, and that accurate knowledge of the statistics of this
variability is essential for realistic predictions of ecosystem struc-
ture and functioning.
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Changes in climate expected in the next century (1) are likely
to have important consequences for the structure, composi-

tion, and functioning of terrestrial ecosystems (2–4). Mean cli-
mate (5, 6) and climate variability are projected to shift in
concert (7); for example, warmer climate may be associated with
greater variability in the northeastern United States (8), in-
creasing variability of rainfall intensity during the South Asian
monsoon (9), and increasing frequency of heat waves (10).
Changes in the intermittent temporal distribution of meteo-

rological variables are recognized to have nonlinear effects on
hydrological processes such as evaporation and infiltration (11),
requiring that high-frequency variability of meteorological driv-
ers be accurately represented in hydrological models (12). It is
understood that ecosystems also respond nonlinearly to envi-
ronmental variation (13), but there has been little investigation
into the effects of high-frequency variability on the terrestrial
biosphere. Some studies of climate change effects on terrestrial
ecosystems have used monthly averaged climatology, eliminating
intermittent variability altogether (14–16); others use meteoro-
logical products derived from reanalysis (17, 18) or general cir-
culation models (19, 20). The high-frequency variations of these
products result from parameterized (unresolved) processes, and
are generally not subjected to close scrutiny. But ecosystems
respond nonlinearly to a wide range of environmental variations.
Photosynthesis is a nonlinear function of solar radiation and
temperature (21). Soil respiration often spikes after episodic

precipitation events (22). Plant growth and mortality respond
strongly to extreme events (e.g., droughts, hurricanes), and also
to synoptic-scale fluctuations (23).
In this paper, we assess the influence of meteorological vari-

ability on ecosystem function and development for typical forest
ecosystems in the northeastern United States, using the Eco-
system Demography model version 2 (ED2) biosphere model
(24, 25) and nearly 10 years of eddy-flux measurements. We
assess how strongly this system responds to high-frequency var-
iability of sunlight, temperature, and precipitation, and identify
the most important statistical measures and the underlying
mechanisms for response. ED2 realistically simulates the physi-
ological functioning, growth, death, and recruitment of in-
dividual plants and of the whole forest ecosystem, including
regional structure and vegetation dynamics, for timescales from
hours to decades (Materials and Methods) (24, 25). We find large,
systematic differences in ecosystem functioning and the resulting
structure and composition of the forest when ED2 is driven by
observed hourly meteorological forcing as compared with me-
teorological drivers that have the same mean values but fail to
reproduce high-frequency temporal variation, including sophis-
ticated products generally considered suitable for ecosystem-
climate studies.

Results
ED2 was initialized using observed stand composition and car-
bon stocks at Harvard Forest, and driven with 10 years of hourly
meteorological data from the site (Sfull), monthly averaged
hourly mean values of the same data (Smm; Fig. 1), and other
datasets (see below). Removal of the high-frequency variability
enhanced decadal net ecosystem productivity (NEP) by 50%,
from 4.6 tons of carbon per hectare per year (tC ha−1 y−1) to 3.1
tC ha−1 y−1. Both gross primary productivity (GPP) and total
ecosystem respiration (Rtot) were artificially elevated (Fig. 1), but
the effect was much larger for GPP (16%; 15.4 tC ha−1 y−1 versus
13.3 tC ha−1 y−1) than for Rtot (6%). A similar nonlinear re-
sponse was found for the whole northeastern region in a 100-yr
integration (Fig. 2A): Mean NEP was artificially enhanced by
more than 50% (1.0 tC ha−1 y−1 versus 0.63 tC ha−1 y−1) (SI Text
and Fig. S1).
Altered meteorological variability had long-term consequences

for simulated ecosystem structure and composition. With 100
years of monthly averaged meteorological forcing, above-ground
biomass (AGB) in the region increased by 20%. The largest
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increases were in northern areas (Fig. 2A), reflecting stronger
enhancements for conifers (Fig. 2B): AGB more than doubled
for conifers, but was only 13% higher for hardwoods, in Smm

versus Sfull (Fig. 2B). Stand composition shifted in favor of coni-
fers, especially in the mixed coniferous-hardwood forests typical
of the central and southern parts of the region (Fig. 2 C and D
and Fig. S2).

The model’s differential response of conifers versus hard-
woods to meteorological variability reflects the importance of
conifer photosynthesis during springtime, when meteorological
variance is especially large and thus the nonlinear response to
variability has a larger effect. Because hardwoods are tran-
sitioning to/from dormancy, they are affected far less by mete-
orological variability during this period.
It is not surprising that the full hourly variance for sunlight

reduces simulated GPP and growth rates (26), because light-use
efficiency (indicated by the slope of the relationship between
GPP and irradiance level) is highest at low irradiance levels and
declines markedly at high irradiance (Fig. S3). However, there
are differences in the shapes of the GPP-sunlight curves (Fig. S3,
undotted lines), showing that much of the difference between
Sfull and Smm results from two unexpected factors (i): an indirect
effect of precipitation variability arising from canopy in-
terception, and (ii) the compounding effect of changing forest
composition over time. In simulations with static forest compo-
sition and interception disabled (Sfull-ic and Smm-ic; dotted lines in
Fig. S3), the GPP-light curves are nearly identical. (Because this
reduced model does not preserve ecosystem water balance, soil
moisture, GPP, and NEP are not the same.)
ED2 utilizes the widely accepted Farquhar/Ball-Berry/Collatz

photosynthesis formulation, which predicts that GPP declines at
high temperature and low humidity, as occurs during the summer
daytime growing season conditions in this forest (specifically, sunlit,
temperature > 14 °C, intercellular CO2 ∼250 parts per million).
Intercepted precipitation increases GPP by cooling leaves and ele-
vating canopy humidity (cf ref. 27). Analysis of eddy-flux data from
Harvard Forest confirms that this effect actually occurs: For a given
solar input, a wet canopy does indeed have a higher photosynthetic
rate than a dry canopy (Fig. 3). Reduced-variability (Smm) simu-
lations yield unrealistic, near-continuous wetting of the canopy,

Fig. 1. Simulated carbon fluxes at Harvard Forest (42.5°N, 72.1°W). Net
ecosystem productivity (NEP; red curves), gross primary productivity (GPP;
green curves), and ecosystem respiration (Rtot; blue curves) were all lower in
Sfull versus Smm.

Fig. 2. Impacts ofmeteorological variability on ecosystem structure. (A) Regional above-ground biomass (AGB) differences between Sfull and Smm after a 100-year
integration. (B) Time series of AGB (black curves), hardwood AGB (red curves), and conifer AGB (blue curves) averaged over the region (A). (C andD) Above-ground
biomass at the end of the 100-year simulation at a site in Maine (46.25°N, 69.25°W), partitioned by plant functional type and tree diameter at breast height (DBH).
(C) The predicted forest composition in the presence of meteorological variability. (D) The corresponding distribution for the monthly mean simulation.
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artificially elevatingGPP (Table 1; Fig. 4).Meteorological variability
primarily affects GPP; changes in simulated respiration (both by
plants and soils) are secondary responses to changes in GPP
(SI Text).
To confirm our diagnosis of the mechanism, we used the

monthly means, variances, and covariances of sunlight, temper-
ature, and precipitation from observed weather over 8 years at
Harvard Forest (SI Text) to parameterize a climate generator,
which allowed us to arbitrarily adjust the variances and cova-
riances of the meteorological drivers while keeping their means
unchanged. We then used the climate generator to conduct
thousands of ecosystem simulations, adjusting variances and
covariances of the different meteorological drivers over broad
ranges that encompassed the range of meteorology variability
found in the various forcing datasets. This analysis showed that
the key higher-order components of temporal variability were
the SDs of precipitation (σprecip) and sunlight (σsolar), and that
simulated annual GPP was accurately predicted by a simple bi-
variate linear equation:

GPPðtC ha− 1 yr− 1Þ= 24:5− 2:2 σprecip ðmm h− 1Þ− 0:045 σsolar
�
Wm− 2�:

[1]

Accurate representation of precipitation and radiation variances
in the climate generator resulted in accurate simulation of
annual carbon fluxes and associated dynamics of above-ground

biomass and forest composition (SI Text). Within-month vari-
ance in temperature and covariances among the environmental
parameters were not statistically significant predictors of annual
GPP. We also derived a monthly analog for Eq. 1 (SI Text;
Tables S1 and S2).
We found that the effects of meteorological variability shown

here formonthlymean forcing (Smm) apply directly to sophisticated
meteorological drivers, including European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA-40 and National
Centers for Environmental Prediction (NCEP) reanalysis data (28,
29), the Geophysical Fluid Dynamics Laboratory (GFDL), God-
dard Institute for Space Studies (GISS), and Centre National de
Recherches Météorologiques (CNRM) atmosphere-ocean general
circulationmodels (AOGCMs) (30–32), and International Satellite
CloudClimatology Project (ISCCP) radiation (33) (Fig. 4; Table 1).
To isolate the effects of variability, means of all meteorological
drivers were adjusted to match the observations. In simulations
using reanalysis and ISCCP data, GPP values were elevated be-
cause σsolar was smaller than observed, likely due to grid size and/or
parameterizations of boundary-layer processes. One AOGCM,
CNRM, produced sunlight and precipitation variability and re-
sultingGPP remarkably close to Sfull, whereas the GFDL andGISS
AOGCMs had excessively high levels of radiation and precipitation
variability, resulting in significantly reduced GPP (Fig. 4). These
differences led to large discrepancies in the magnitude of the ter-
restrial carbon sink: 10% in GPP, 25% in NEP, and 60% in AGB
(Fig. S4) over 8 years. The variations would potentially be greater
over longer periods as ecosystem structure evolves.
We explored how future changes in climate variability might

affect carbon fluxes by comparing 8-year simulations at Harvard
Forest forced with GFDL and CNRM SRESA2 meteorological
outputs for the 2090s against similar simulations using meteo-
rological output from 20th-century simulations. All means were
adjusted to be equal to the 1990s observations (raw means are
given in Table S3). In the GFDL forcing dataset, variability of
precipitation increased in the 2090s, but solar radiation vari-
ability decreased (Table 2), partially offsetting each other and
leading to a small increase in GPP (0.28 tC ha−1 y−1; Table 2),

Fig. 3. Observed hourly net carbon uptake as a function of incoming solar
radiation in July. Days with >1 mm of rain (solid curve) have larger carbon
uptake than drier days at the same light levels, especially at the highest
irradiances.

Table 1. Precipitation and radiation variability for different
meteorological drivers and the consequences for GPP

σprecip σsolar Simulated GPP Fitted GPP
(mm h−1) (W m−2) (tC ha−1 y−1) (tC ha−1 y−1)

Sfull 333 225 13.1 13.7
Smm 059 197 15.4 15.5
ECMWF 405 214 14.5 14.0
NCEP 455 204 14.5 14.3
GFDL 372 242 12.2 12.8
CNRM 311 229 13.5 13.6
GISS 348 253 11.6 12.3
ISCCP 333 213 14.0 14.2

The simulated GPP was derived from an 8-year ED2 simulation and the
fitted GPP was derived from Eq. 1. σ, SD.

Fig. 4. Dependence of gross primary productivity (GPP) and precipitation
and radiation variability. The X-Y locations of the points indicate the dif-
ferent levels of precipitation and radiation variability present in different
meteorological forcing datasets (Table 1). The Z locations of the points in-
dicate the GPP that is simulated when the ED2 biosphere model is forced
with each meteorological dataset. The dependence of GPP on meteorolog-
ical variability is largely captured by Eq. 1, which is depicted in the figure as
the planar surface. Note that the surface has an accompanying thickness,
ranging from 0.56 to 0.65 tC ha−1 y−1, arising from the uncertainty in the
estimated parameters in Eq. 1 (intercept: 24.5 ± 0.4; coefficient of σprecip:
−2.2 ± 0.2; coefficient of σsolar: −0.045 ± 0.002). However, this has been
omitted for simplicity.
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about 12% of the difference between Smm and Sfull. The increase
in ecosystem respiration was only about half as large as the in-
crease in GPP, indicating an increase in carbon storage in the
ecosystem due solely to changes in high-frequency variances.
Indeed, we found that above-ground biomass increased at a rate
0.08 tC ha−1 y−1 greater for the 2090s than for the 1990s. Carbon
fluxes and carbon storage also increased in the 2090s relative to
the 1990s when ED2 was forced with CNRM output, but the
magnitudes of the changes were different (SI Text).
Finally, we carried out 1990s and 2090s simulations with

GFDL and CNRM AOGCM output in which mean meteoro-
logical drivers were unadjusted. Thus, these simulations illustrate
the combined effects of changes in means and changes in vari-
ability. In most cases, simulations driven with 2090s meteorology
yielded increased GPP, respiration, NEP, and AGB increments
(Table S4). The magnitudes of these changes were the same
order of magnitude as those obtained when the means were
adjusted to match the observations (Table 2).

Discussion
Our study shows that high-frequency meteorological variability
profoundly affects simulated terrestrial carbon dynamics and the
associated vegetation structure and composition. When ecosys-
tems are studied with offline biosphere-atmosphere models driven
by overly smooth climate forcing (14–20), simulated carbon up-
take may exceed actual carbon uptake by as much as one-third.
Our results further show that this modeling misrepresentation can
be addressed by using a weather generator, forced with monthly-
hourly means and variances, to disaggregate monthly meteoro-
logical data into an hourly time series with variances that match
observations at the ground.
Most coupled biosphere-atmosphere models run on an ade-

quately short time step to incorporate the effects of high-
frequency variances in meteorological drivers on ecosystem dy-
namics. However, the variances in sunlight and precipitation are
the emergent properties of parameterized features of climate
models that often have little climate impact (e.g., boundary-layer
clouds) and are typically not reported in model outputs, and thus
are not validated. In addition, subgrid-scale precipitation vari-
ability has been shown to have a strong effect on canopy in-
terception, evapotranspiration, and runoff (34). Model results
are highly sensitive to the choice of parameterization, and work
in this area is an ongoing challenge (35). The strong differences
in sunlight and precipitation variances among AOGCM models
and reanalysis datasets (Table 1) indicate the need for careful

investigation of meteorological variability during model de-
velopment and application.
Errors in driver variances can bias results from atmospheric

inverse studies that estimate surface carbon fluxes (36–38) from
atmospheric CO2 concentrations or that determine biosphere
model parameters obtained by assimilating data from field
studies (39, 40). To deliver unbiased estimates of NEP (41), the
biosphere models used in these studies must be driven with fields
that accurately simulate both means and short-term variances,
and cannot use temporally smoothed or spatially aggregated
meteorological drivers (cf refs. 36–38). Whether the observa-
tionally derived ISCCP radiation is adequate, or whether it ge-
nerically underestimates radiation variability due to coarse
resolution, will require further study at additional sites.
We found that two mechanisms control how high-frequency

variances affect simulated leaf-level photosynthesis. Solar radi-
ation variance had a strong effect (Eq. 1), as expected given the
nonlinear, saturating dependence of photosynthesis on sunlight
(26). Precipitation variance was a surprising factor that arose
from the cooling of the leaf surfaces that occurs as a result of
evaporation of intercepted precipitation. When rain events are
heavy and sporadic, overheating of leaves during dry periods
becomes more common, depressing leaf photosynthetic rates.
The effects of high-frequency meteorological variability de-

scribed here are distinct from the effects of low-frequency ex-
treme events, such as hurricanes, ice storms, and droughts (42).
These events also contribute to precipitation variance, but they
primarily influence ecosystem carbon fluxes and state variables
through different mechanisms, such as increases in canopy
mortality in the cases of hurricanes and ice storms and, in the
case of droughts, drought-induced stomatal closure and drought-
induced mortality. Extreme events most strongly affect mortality,
whereas high-frequency variability acts primarily on GPP.
We expect that the simulated response to sunlight and pre-

cipitation variances (σsolar and σprecip) should apply to real eco-
systems, given the clearly defined biophysical mechanisms and
previous validation of ED2 (25). Eq. 1 is specific to Harvard
Forest, but we anticipate that the signs and magnitudes of its
coefficients will be similar for other sites in the same climate
zone because similar biophysical mechanisms should operate. In
other climate zones, we anticipate that the magnitude of its
coefficients will vary depending on the mean values of radiation,
precipitation, and temperature at a given location, but that the
signs of the coefficients are likely to be same as in Eq. 1.

Table 2. Simulated changes in climate variability and their impacts on carbon fluxes and
ecosystem state variables at Harvard Forest

Δσprecip Δσsolar ΔGPP ΔR ΔNEP ΔAGB incr
(mm h−1) (W m−2) (tC ha−1 y−1) (tC ha−1 y−1) (tC ha−1 y−1) (tC ha−1 y−1)

GFDL
2100 σprecip +0.06 — −0.11 −0.07 −0.05 −0.05
2100 σsolar — −4.4 +0.43 +0.24 +0.19 +0.10
2100 σprecip + σsolar +0.06 −4.4 +0.28 +0.14 +0.14 +0.08

CNRM
2100 σprecip +0.04 — +0.07 −0.00 +0.07 +0.04
2100 σsolar — −0.1 +0.37 +0.13 +0.24 +0.15
2100 σprecip + σsolar +0.04 −0.1 +0.41 +0.12 +0.28 +0.17

AOGCM output was used to obtain the differences between 2090s and 1990s precipitation and solar radiation
SDs (Δσprecip and Δσsolar, respectively). ED2 was used to simulate the differences in gross primary productivity
(ΔGPP), respiration (ΔR), net ecosystem productivity (ΔNEP), and above-ground biomass increments (ΔAGB incr)
that resulted when circa 2000 precipitation and solar radiation were swapped for circa 2100 climate drivers. In all
cases, the meteorological means were adjusted to be identical to the 1990s observations. Changes in GPP from
the GFDL simulations are consistent with Eq. 1. However, Eq. 1. does not describe the changes in GPP from the
CNRM simulations because of strong changes in seasonal variability (Fig. S5): Increases in GPP are simulated
because of decreases in May–September σprecip (−0.04 mm h−1) and σsolar (−6.0 W m−2).
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Based on simulations driven by AOGCM output (Table 2), we
propose here that climate change will impact terrestrial eco-
systems in part through changes in high-frequency meteorolog-
ical variability. The strength of this effect may be comparable
to that arising from changes in mean meteorological drivers.
However, uncertainties in climate models limit our confidence
in quantitative estimates of changes in future variability and
associated carbon fluxes.
Our simulations were all carried out with a single ecosystem

model that, like all models, is an incomplete and imperfect rep-
resentation of reality. Additional empirical tests are needed to
further evaluate and develop the mechanisms proposed here.
Specifically, multiyear records from eddy-flux towers at other sites,
including conifer-dominated sites, could be used to test whether
conifers do, in fact, exhibit a larger response to variability than
deciduous trees. And given the strong effect of canopy inter-
ception on ecosystem functioning, additional measurements of
throughfall effects would be very useful for model evaluation.
We conclude that studies of climate-ecosystem interactions re-

quire careful representation of meteorological forcing, including
their high-frequency statistical variances. This requirement be-
comes more stringent as biosphere/land-surface models become
more realistic and as dynamic changes in vegetation come into
focus. The mechanisms identified here whereby meteorological
variances influence ecosystem responses on hourly-to-monthly
timescales are general, applying to forests throughout the globe,
and hence the requirements for models and model drivers are,
likewise, broadly applicable. Changes in high-frequency as well
as low-frequency climate variability will have important conse-
quences for the composition, structure, and functioning of ter-
restrial ecosystems.

Materials and Methods
Harvard Forest Simulations. The ED2model is described in SI Text. Physical and
biogeochemical soil properties needed to initialize the Harvard Forest sim-
ulations were obtained from field measurements. The initial forest structure
and composition were obtained from the forest inventory measurements
within the flux-tower footprint following ref. 25.

The meteorological drivers required by ED2 are solar radiation, long-wave
radiation, temperature, humidity, precipitation, wind speed, and pressure.
For the Harvard Forest simulations, these were specified from the EMS eddy-
flux tower meteorological observations, with any gaps filled by measure-
ments from a nearby weather station. The simulation Sfull used the hourly
mean values of all meteorological drivers. Smm was driven by the monthly-
hourly mean of the meteorological forcing used in Sfull. The GISS, CNRM,
GFDL, ECMWF, and NCEP output had temporal resolutions ranging from
1,800 (GISS) to 10,800 (CNRM, GFDL) to 21,600 (ECMWF, NCEP) seconds. In-
stantaneous values of all meteorological drivers except solar radiation were

generated from a simple linear interpolation in time. Instantaneous values
of solar radiation were obtained by weighting the radiation values in the
original datasets by the cosine of the solar zenith angle. The ISCCP simula-
tion was identical to Sfull, except that it used 3-hourly ISCCP radiation linearly
interpolated in time. All meteorological fields were rescaled to match the
observed monthly-hourly mean values, yielding forcing datasets differing
only in their higher-order statistics.

Regional Simulations. All regional simulations were done on the 0.5° × 0.5°
grid shown in Fig. 2A. Soil textural class was assigned at the level of the grid
cell using the 1° × 1° resolution US Department of Agriculture global soil
database because higher-resolution data were unavailable for Quebec.
Forest inventory data (43, 44) were used to initialize the forest composition.
Horizontal heterogeneity was captured by defining each inventory plot as
a separate patch within each grid cell, whereas the vertical heterogeneity
within each plot was captured by defining each tree as a cohort with species
assignment to the appropriate plant functional type.

Meteorological drivers for the regional simulations were obtained from
the ECMWF ERA-40 reanalysis (28), which had a temporal resolution of 6 h.
These 6-hourly values were disaggregated into hourly values using the same
procedure used in the Harvard Forest simulations (see above). The regional
Smm was driven by monthly mean diurnal cycles of the meteorological
forcing used in the regional Sfull.

Following ref. 25, the vegetation phenology was prescribed frommoderate-
resolution imaging spectroradiometer-derived estimates of leaf onset and
offset dates averaged between 2001 and 2004 (45). Spatial patterns of forest
harvesting were derived from forest inventory data and were applied as
a disturbance forcing to the model using the methodology of ref. 17. The
period June 1982–June 2082 was simulated, but the first 5 simulated years
(1982–1986) were used only to equilibrate the soil carbon pools and to allow
for the establishment of grasses (which are not accounted for in the forest
inventories) in recently harvested patches.
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