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ABSTRACT
The CO2 concentration of the atmosphere has increased by almost 30% since
1800. This increase is due largely to two factors: the combustion of fossil fuel
and deforestation to create croplands and pastures. Deforestation results in a
net flux of carbon to the atmosphere because forests contain 20–50 times more
carbon per unit area than agricultural lands. In recent decades, the tropics have
been the primary region of deforestation. The annual rate of CO2 released due
to tropical deforestation during the early 1990s has been estimated at between
1.2 and 2.3 gigatons C. The range represents uncertainties about both the rates
of deforestation and the amounts of carbon stored in different types of tropical
forests at the time of cutting. An evaluation of the role of tropical regions in the
global carbon budget must include both the carbon flux to the atmosphere due
to deforestation and carbon accumulation, if any, in intact forests. In the early
1990s, the release of CO2 from tropical deforestation appears to have been mostly
offset by CO2 uptake occurring elsewhere in the tropics, according to an analysis
of recent trends in the atmospheric concentrations of O2 and N2. Interannual
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variations in climate and/or CO2 fertilization may have been responsible for the
CO2 uptake in intact forests. These mechanisms are consistent with site-specific
measurements of net carbon fluxes between tropical forests and the atmosphere,
and with regional and global simulations using process-based biogeochemistry
models.
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INTRODUCTION
The CO2 concentration of the atmosphere has increased from ∼ 280 parts per
million volume (ppmv) in 1800 to ∼ 360 ppmv in 1995. This increase is due
largely to two factors: the combustion of fossil fuel and deforestation to create
croplands and pastures. Deforestation results in a net flux of carbon to the
atmosphere because forests contain 20–50 times more carbon per unit area
than agricultural lands. The importance of deforestation relative to fossil-fuel
combustion for the atmospheric CO2 increase has changed over the past 200
years. Prior to 1900, the emissions of carbon resulting from deforestation
were greater than those from fossil-fuel burning (1, 2, 3). Today, fossil-fuel
use releases several times as much CO2 into the atmosphere as deforestation
(3). The regions undergoing deforestation have also changed over time. In
the eighteenth and nineteenth centuries, the expansion of croplands in Europe,
Russia, and North America was the major cause of deforestation. Early in
the twentieth century, however, deforestation in these areas slowed; later in
the century, particularly after the end of World War II, deforestation in the
tropical areas of Latin America, Africa, and Asia accelerated (4). By 1980,
almost the entire flux of CO2 to the atmosphere resulting from deforestation
was from the tropics (5); the release of carbon from deforestation in temperate
and boreal regions was extremely small at that time (6). The purpose of this
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paper is to review recent analyses of the consequences of deforestation for the
global carbon budget, with an emphasis on deforestation during the past several
decades.

DATA REQUIRED FOR CALCULATING CARBON FLUX
TO THE ATMOSPHERE FROM DEFORESTATION
The emissions of carbon from deforestation are calculated from several types
of data, including rates of deforestation, stocks of carbon in vegetation and in
soil per unit area of forest and of cleared land, and the fate of the deforested
land.

Global and Regional Rates of Deforestation
Most of the recent estimates of carbon flux resulting from deforestation in the
tropics worldwide have relied heavily on one or more of the following sur-
veys of deforestation rates: Myers (7, 8); Food and Agricultural Organization
(FAO)/United Nations Environment Program (UNEP) (9); FAO (10); World Re-
sources Institute (WRI) (11). The first two surveys of pan-tropical deforestation
were those of Myers (7) and FAO/UNEP (9). They reported deforestation rates
for the late 1970s, and both considered closed forests. In the FAO/UNEP sur-
vey, closed forests were defined as dense forests that do not allow sufficient
penetration of light for grasses to grow on the forest floor. The Myers estimate
of deforestation for closed forests for the entire tropics was 7.6 × 106 hectares
(ha) year−1, a rate only slightly higher than the 7.3 × 106 ha year−1 reported
by FAO/UNEP (Table 1). At the regional level, the estimates were the same
for Africa, but Myers’ estimate was 10% lower than FAO/UNEP’s for Latin
America and about 45% higher for Asia (Table 1).

The FAO/UNEP survey also considered open forests, whereas the Myers
survey did not. Open forests, also called woodlands and savannas, have grasses
present between trees or clumps of trees. According to the FAO/UNEP study,
deforestation of open tropical forests was about 4.0 × 106 ha year−1 in the late
1970s. The FAO/UNEP estimate for the total annual rate of tropical deforesta-
tion, open plus closed, for the late 1970s was thus 11.3 × 106 ha (Table 1).

For the decade since the late 1970s, estimates of the rate of deforestation in
the tropics have increased substantially (Table 1). Myers (8) reported that the
annual loss of closed forests had almost doubled, from 7.6 × 106 ha year−1 in
1979 to 13.9 × 106 ha year−1 in 1989. WRI (11) has also published global es-
timates for deforestation rates for closed tropical forests during the late 1980s.
The WRI estimate, at 16.5 × 106 ha year−1, was higher than Myers’ estimate.
Considering both closed and open forests, FAO (10) recently reported a world-
wide tropical deforestation rate of 15.4 × 106 ha year−1. According to FAO,
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Table 1 Estimates of rates of tropical deforestation and relative increases (percent)
over the decade of the 1980sa,b

Latin America Africa Asia All tropics References

FAO/UNEP
Late 1970sc 4.1 1.3 1.8 7.3 9

FAO
1976–1980d 5.6 3.6 2.0 11.3 10
1981–1990d 7.4 4.1 3.9 15.4
Percent increase 32 12 93 36

Myers
1979e 3.7 1.3 2.6 7.6 7, 8
1989e 7.7 1.6 4.6 13.9
Percent increase 108 23 77 83

Myers modifiedf

1989 4.5 10.7 8
Percent increase 22 41
aEstimates given in values of 106 ha year−1.
bModified from (12).
cClosed forests only.
dFrom FAO/UNEP (9), FAO (10); closed and open forests.
eMyers (7,8); closed forests only.
fRevised rates and percent increases for Latin America are based on an average annual rate of

deforestation for the 1980s in Brazil of 1.8 × 106 rather than 5.0 × 106 ha year−1.

this represented a 36% increase in the average annual deforestation rate for
the period 1981–1990, relative to the period 1976–1980. The FAO calculation
of the percentage increase included upward revisions of the FAO/UNEP (9)
estimates of deforestation rates for the late 1970s, especially for some of the
larger Asian countries (Table 1).

Rate of Deforestation in Brazil
Based on information from the early 1970s, FAO/UNEP (9) estimated that 10
countries contained more than 75% of the world’s tropical forests; one of those,
Brazil, contained about 31% of the total (Table 2). Most of Brazil’s tropical
forests are located within an area known as the Legal Amazon, which includes
all of the states of Acre, Amapa, Amazonas, Para, Rondonia, and Roraima, plus
parts of Mato Grosso, Maranhao, and Tocantins. This area encompasses about
500 × 106 ha, of which about 400 × 106 ha is forest, 90 × 106 ha is cerrado
(open woodland), and 10 × 106 ha is water.

Over the past two decades, Brazil has had the highest rates of tropical defor-
estation in the world, although the estimates of these rates span a wide range
for the period of the 1980s. At the upper end of the range are the estimates of
WRI (11) and Myers (8) (Table 2). The WRI estimate was based on a study
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by Setzer & Pereira (13), who used advanced, very high resolution radiometry
(AVHRR) data from the NOAA-7 satellite to determine the number of fires in
the Legal Amazon during the dry season period of mid-July through September,
1987. From the number of fires, they produced their estimate of the area of
forest cleared. Their estimate of the deforestation rate in 1987 was 8.0 × 106

ha year−1, and it was included without change in the WRI study. Myers (8)
also based his estimate of deforestation in Brazil in the late 1980s on the work
of Setzer & Pereira (13), but he reduced their estimate to avoid multiple ac-
counting of single fires that burned for more than one day. Myers estimated the
Brazilian deforestation rate for the late 1980s to be 5.0 × 106 ha year−1.

In light of more recent studies, however, the estimates of deforestation made
by WRI and Myers seem much too high. The recent studies use data from
satellites, such as Landsat, that are more spatially resolved (finer scale) than
the NOAA-7 data. Brazilian scientists at the Instituto Nacional de Pesquisas
Espaciais (INPE) have estimated that the average rate of deforestation of closed
forests in the Legal Amazon over the period 1978 through 1989 was 2.1× 106 ha
year−1 (14). Detailed documentation of the evolution of the official Brazilian
deforestation estimate can be found in a series of papers published between
1980 and 1992 (15–18). Skole & Tucker (19), two scientists from the United
States, have reported an even lower average rate of 1.5 × 106 ha year−1 from
1978 to 1988. And Fearnside (14) estimated that by 1991, the annual rate of
deforestation in the Brazilian Amazon may have been as low as 1.1 × 106

Table 2 Estimates of forest areas and deforestation rates for the 10 countries with the largest
tropical forest areas as of the early 1970s. Deforestation-rate estimates are for the late 1970s and
late 1980s

Forest area Deforestation rates
Total forest Percent of FAO/UNEP (9) Myers (8) WRI(11)

area (106 ha) world total (late 1970s) (late 1980s) (late 1980s)
Country (106 ha year−1) (106 ha year−1) (106 ha year−1)

Brazil 356 30.7 1.36 5.00 8.00
Indonesia 113 9.8 0.55 1.20 0.90
Zaire 106 9.1 0.17 0.40 0.18
Peru 69 6.0 0.24 0.35 0.27
Columbia 46 4.0 0.80 0.65 0.82
India 46 4.0 0.13 0.40 1.50
Bolivia 44 3.8 0.06 0.15 0.09
Papua, New Guinea 34 2.9 0.02 0.35 0.02
Venezuela 32 2.7 0.12 0.15 0.12
Burma 31 2.7 0.09 0.80 0.68

Total 877 75.7 3.54 9.45 12.58
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Table 3 Estimates of vegetation carbon stocks in closed tropical
forests using two different methodsa

Latin America Africa Asia

Direct biomass measurmentsb 165 185 200
Biomass estimates from volume

Estimates from early 1980sb 85 95 110
Estimates from late 1980s

Undisturbed 90 135 110
Partially logged 75 110 60

a Units are metric tons (Mt) C/ha. Values rounded to the nearest 5 Mt.
b Average of evergreen and seasonal forest vegetation C.

ha year−1. If these recently reported deforestation data for Brazil are better
estimates than the one used by Myers, the pan-tropical deforestation rate may
have increased during the decade of the 1980s by about 41% rather than by
Myers’ original estimate of just over 83% (Table 1).

Carbon per Unit Area
Forests hold more carbon per unit area in vegetation and soils than the ecosys-
tems that replace them. Carbon is released to the atmosphere through burning
at the time of deforestation and through decay of plant material and soil organic
matter in the years following. The amount of carbon released per unit area
depends on the amount of carbon held in forests and in the ecosystems that
replace them; cleared lands may hold 20–50 times less carbon per unit area
than forests.

VEGETATION Estimates of the amount of carbon held in the vegetation of the
closed tropical forests of Latin America, Africa, and Asia differ by a factor
of almost two (Table 3). The high estimates are based on direct, destructive
sampling that involves cutting and weighing trees and other vegetation to de-
termine plant carbon stocks. The low estimates are based on the volumes of
growing stocks of wood that are then converted to stocks of carbon (20–22).
A comparison of the estimates of carbon stocks (Table 3) shows that those
based on direct measurements (23–25) are generally similar to each other but
are about twice the value of those derived from wood volumes (20). Recent
work by Brown et al (26) has revised the lower estimates upwards slightly for
undisturbed closed forests (Table 3), but large differences remain between the
estimates from the two approaches. In addition, Brown et al (26) note (Table
3) that many areas that are being deforested today have already been partially
logged, so the carbon stocks at the time of deforestation might even be lower
than those estimated earlier by Brown & Lugo (20).
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At least two factors have been identified that singly or in combination may
contribute to the differences between estimates from the two approaches (27).
The first is the representativeness of the two estimates. The direct biomass
estimates have been based on vegetation sampled in fewer than 30 ha world-
wide (26), whereas the volume-derived estimates of biomass have been based
on surveys of thousands of ha of closed tropical forest. Thus, the volume-
based estimates may be more representative, but they are not without problems.
Second, errors may still be present in the factors used to convert volumes of
merchantable wood to total carbon stocks.

Which set of estimates is more accurate is not clear (20, 27–29). Because
of this, a number of studies that estimate carbon losses from land due to trop-
ical deforestation have used both sets of estimates in a sensitivity-analysis
mode.

SOILS Several estimates have been made of the amount of organic carbon in the
top meter of soil in tropical forests. The estimates have been stratified in various
ways, including stratification into major soil classes (30), vegetation types (31,
32), and life zones (24, 32, 33), which are defined as potential vegetation zones
determined by climatic variables.

About one third of the total mass of organic carbon stored in the world’s soils
to a depth of 1 m is found in the tropics (30). Eswaran et al (30) estimated that of
the 506 gigatons carbon (Gt C or 1015 g C) found in tropical soils, 206 is in soils
of closed tropical forests. Four major soil orders—histosols, oxisols, ultisols,
and andisols—account for more than 95% of the 206 Gt C (Table 4). Histosols
are wet, organic soils, and they are particularly prominent in the Sumatra,
Kalimantan, and peninsular Malaysia regions of the humid tropics of Asia.
These organic soils are difficult to manage for agriculture because they subside
upon drainage and cultivation, and they are deficient in micronutrients such as
copper. Oxisols and ultisols are often referred to as acid infertile soils. Although
they are generally well drained, they have a variety of chemical limitations: high
soil acidity; aluminum toxicity; and deficiency of one or more of the following
nutrients: phosphorus, potassium, calcium, magnesium, sulfur, and zinc (and
other micronutrients). With proper management, including fertilization, these
soils can often be productive for agriculture. Andisols form from volcanic glass
and nearly always have a high organic content. These soils support some of
the most productive, stable, and sustainable agricultural systems in the tropics,
such as those on the Indonesian island of Java.

Changes in Carbon with Disturbance
The use of deforested lands is another factor that affects the net flux of carbon
to the atmosphere. Analyses of the effects of deforestation on terrestrial carbon
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balance usually consider the conversion of forests and woodlands to various
forms of agriculture, including permanent croplands, shifting cultivation plots,
and pastures. In addition, some of the analyses also consider the abandonment
of croplands and pastures, the harvest of timber, and the establishment of tree
plantations.

As forests and woodlands are cleared for croplands, shifting-cultivation plots,
or pastures, some of the wood may be harvested for products that oxidize
at varying rates. Most of the above-ground biomass is burned and released
immediately to the atmosphere as CO2. The remainder of the above-ground
and below-ground material decays. The rates of decay vary with climate and the
chemical composition of the plant material (34–36), but in the moist tropics most
material decomposes within 10 years. A small fraction of the plant material
burned is converted to black carbon, which is resistant to decay (29, 37–41).
When croplands and pastures are abandoned, these areas may return to forests
at rates determined by the intensity of disturbance and climatic factors (24,
42). When severely degraded agricultural land is abandoned it may become
shrubland rather than forest.

Cultivation of forest soils generally results in a loss of organic carbon (43, 44).
Estimates vary, but on average about 25% of the carbon in the surface horizons
seems to be lost to the atmosphere when forest soils are cleared of vegetation
and cultivated. The loss is exponential, with most of the loss occurring within
the first 5 years following clearing.

Table 4 Organic C in tropical forest soils—those soils that are under closed forest or can support
a closed foresta

Organic C
Order Tropical soils (Gt) Tropical forest soils (Gt) Forest soils (% of total)

Histosols 100 100 100
Oxisols 119 43 36
Ultisols 85 30 35
Andisols 47 25 53
Alfisols 30 4 13
Inceptisols 60 2 3
Entisols 19 1 5
Vertisols 11 1 9
Aridisols 29 0 0
Spodosols 2 0 0
Miscellaneous land 2 0 0

Total 506 206 41
a Modified from (30).
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The effect on soil carbon stocks of the conversion of forests to pastures is
highly variable. Some studies show a loss of carbon (29, 43, 45–53). On the
other hand, under some conditions there appears to be no loss of soil carbon
(54, 55), and there may even be an increase (49, 53, 56–60). Buschbacher et
al (61) have suggested that these differences in pasture soil carbon are largely
related to the time since clearing and the intensity of use.

Shifting cultivation is common in the tropics. It involves short periods of
cropping and long fallow periods, during which forests regrow. Because of
the partial recovery of forests during the fallow period, deforestation for shift-
ing cultivation releases less carbon to the atmosphere than deforestation for
permanent croplands or pastures. The length of the fallow period varies con-
siderably among regions, owing to both ecological and cultural differences (62,
63). The decay rates of plant debris resulting from the cutting, as well as the
accumulation rates for regrowing vegetation during the fallow periods, have
been determined for a variety of ecosystems, especially in Latin America (24,
64–66). Shifting cultivation results in less soil carbon loss through oxidation
than does continuous cultivation (43, 44).

CALCULATING CARBON FLUX TO THE ATMOSPHERE
FROM DEFORESTATION
Several accounting-type models, all with similar structures, have been used to
calculate the annual net flux of carbon between the land and atmosphere that
result from deforestation (67–69). The first of these to be developed, the Marine
Biological Laboratory/Terrestrial Carbon Model (MBL/TCM), has been used
since the early 1980s (see e.g. 2, 4–6, 67, 70, 71). The MBL/TCM considers
the changes in terrestrial carbon stocks associated with clearing of forests for
agriculture, and the changes associated with subsequent abandonment of the
agricultural plots and the regrowth of forests (Figure 1). In the year of deforesta-
tion, a large amount of carbon is released through burning. Afterwards, decay
of soil organic matter, logging debris (slash), and wood products release carbon
to the atmosphere. If the agricultural plots are abandoned, regrowth of live
vegetation and redevelopment of soil organic matter withdraw carbon from the
atmosphere and accumulate it on land. In the MBL/TCM, these changes have
been defined for various types of land use and ecosystems in various regions
of the tropics and other regions. Annual changes in the various reservoirs of
carbon (live vegetation, soils, slash, and wood products) determine the annual
net flux of carbon between the land and atmosphere. Because of the variety of
ecosystems and land uses, and because the calculations require accounting for
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Figure 1 Changes in the reservoirs of carbon in a tropical moist forest that was cleared for
croplands, cultivated, and then abandoned. The abandoned land is assumed to return to moist
forest of the same stature as the original forest. Based on response functions of MBL/TCM (see
e.g. 2, 4–6, 67, 70, 71). Note: slash = logging debris.
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different cohorts, the MBL/TCM and the other accounting models have some
level of geographic specificity and usually operate on an annual time step.

ESTIMATES OF CO2 RELEASED FROM TROPICAL
DEFORESTATION

For 1980
Using a slightly modified version of the MBL/TCM, Houghton et al (70) esti-
mated that in 1980, tropical deforestation resulted in a net flux of carbon from
the land to the atmosphere of between 0.9 and 2.5 Gt C. This range is higher than
the one reported by Molofsky et al (68); 0.6–1.1 Gt C. They based their study
on a model very much like the MBL/TCM, and they used the same FAO/UNEP
study as did Houghton et al (70) to provide estimates of deforestation and forest
biomass. Molofsky et al (68) did not include the deforestation of fallow areas.
Houghton et al (70) reported that deforestation of fallow areas released between
0.4 and 0.8 Gt C to the atmosphere. If deforestation of fallow lands was ignored
by Houghton et al (70) in their analysis, the ranges of Molofsky et al (68) and
Houghton et al (70) would be very similar.

In 1987, the carbon fluxes associated with tropical deforestation reported by
Houghton et al (70) were disaggregated among 76 tropical countries on the basis
of country-specific data given by FAO/UNEP (9). In this analysis, Houghton et
al (5) estimated that five countries—Brazil, Indonesia, Colombia, Ivory Coast,
and Thailand—contributed about half of the total net release in 1980 (Table 5).

Since 1987, at least five additional estimates have been published of the loss
of carbon from the tropics due to deforestation in 1980 (22, 27, 71–73). These
recent estimates of the net release of carbon from tropical deforestation (Table
6) have generally been lower than the mid-range given by Houghton et al (5).
Detwiler & Hall (72), using a model similar to the MBL/TCM, and the same
sources of data for rates of deforestation and for carbon stocks, calculated a
range of 0.4–1.6 × 1015 g C. Why this estimate was different from the estimate
of Houghton et al (5) is not clear.

Recently, both Hall and Houghton have revised their earlier estimates down-
ward for 1980 (Table 6). Hall & Uhlig (22) used the new vegetation biomass
numbers suggested by Brown et al (26) and new data on deforestation rates for
the open forests of Latin America (74). The range estimated by Hall & Uhlig
for 1980 was 0.5–1.0 Gt C, with a best estimate of 0.6 Gt C. Houghton has pro-
duced two revised estimates for 1980. The first, published in 1991, reported the
results of a factorial experiment that used forest biomass numbers suggested by
Brown et al (26) with several estimates of deforestation rates, including those
given by Myers (7) and the Myers’ estimates ± 25%. The full range of the
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Table 5 Net release of carbon to the atmosphere (1012 g/year−1 or
Tg) in 1980, from deforestation in the tropicsa

Closed forest Open forest Fallow Total

Latin America
Brazil 207 40 89 336
Columbia 85 1 40 126
Peru 31 0 14 45
Ecuador 28 0 12 40
Mexico 33 0 0 33
Other 65 5 15 85

Subtotal 449 46 170 665
Africa

Ivory Coast 47 12 42 101
Nigeria 30 4 26 60
Zaire 27 8 0 35
Sudan 0 26 0 26
Madagascar 12 0 11 23
Other 42 75 11 128

Subtotal 158 125 90 373
Asia

Indonesia 70 2 120 192
Thailand 33 5 56 94
Laos 30 3 51 84
Philippines 21 0 36 57
Myramar 19 0 32 51
Other 97 1 45 143

Subtotal 270 11 340 621
All Tropics Total 877 182 600 1659

a Modified from Houghton et al (5).

factorial experiments was 0.6–2.5 Gt C, and the likely range was 1.0–2.0 Gt C
(75). Houghton’s second set of revised estimates was produced in 1995 (71).
For these, he used lower rates of deforestation for Latin America, higher rates
of deforestation for Asia, and the forest biomass estimates of Brown et al (26).
The result of these changes was an estimate of 1.3 Gt C ± 30% in 1980.

Hao et al (73) used an approach that differed from the others. They consid-
ered only the releases associated with burning. The Hao et al (73) estimate for
1980 was a range of 0.9–2.5 Gt C, which is identical to an early estimate of
Houghton et al (70).

For 1989, 1990
Using a slightly modified version of the MBL/TCM, Houghton has recently
published one estimate of net carbon flux from land to the atmosphere result-
ing from tropical deforestation for 1989 (27) and another for 1990 (71). The
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estimate for 1989 was based on Myers’ 1991 estimate of tropical deforesta-
tion, which contained what we now think was a high estimate of deforestation
in Latin America (see above discussion on Rate of Deforestation in Brazil).
When Houghton used Myers’ estimates of deforestation with a range of es-
timates of carbon stocks, and several different assumptions about the role of
shifting cultivation in deforestation, the net flux of carbon in 1989 was estimated
to be between 1.1 and 3.6 Gt C, with the likely range estimated at between 1.5
and 3.0 Gt C for that year.

Houghton’s latest estimate for net carbon flux from the land to the atmosphere
due to deforestation, for 1990, is 1.7 Gt C (71). For this most recent estimate,
Houghton used the biomass numbers of Brown et al (26) and new estimates of
deforestation rates for Latin America and Asia. The Latin America estimate
was revised downward from the number used by Houghton in his 1991 paper
(27) to reflect the recent reevaluation of deforestation rates in Brazil (see above
discussion on Rate of Deforestation in Brazil). The Asian estimate was revised
upward from the one used by Houghton in his 1991 paper (27) to be consistent
with FAO’s recent work for this region (10). For 1990, Houghton (71) calculated
emissions from Latin America and Asia to be about 0.7 Gt C, and from Africa
about 0.35 Gt C.

CARBON BALANCE IN UNDISTURBED TROPICAL
FORESTS
Anthropogenic emissions of CO2 in 1990 amount to about 5.6 Gt C from fossil-
fuel burning and about 1.7 Gt C from tropical deforestation, whereas the annual
increase in carbon in the atmosphere as CO2 was only about 3.4 Gt C. The

Table 6 Recent estimates of net carbon flux from the land to the atmosphere
resulting from tropical deforestation Ea

Net flux of carbon Net flux of carbon
Study (Gt C in 1980) (Gt C in 1989, 1990)

Molofsky et al (68) 0.6–1.1
Houghton et al (Table 5; 5) 0.9–2.5
Detwiler & Hall (72) 0.4–1.6
Hao et al (73) 0.9–2.5
Hall & Uhlig (22) 0.6b

Houghton (75) 1.0–2.0 1.5–3.0
Houghton (71) 1.3 1.7c

aEstimates are for two years, 1980 and 1990, unless noted.
bBest estimate, range 0.5–1.0.
cRange 1.2–2.3.
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difference of about 3.9 Gt C in 1990 is presumed to be distributed among the
oceans and terrestrial ecosystems. Ocean uptake has been estimated at about
2.0 Gt C, with terrestrial ecosystems storing the remainder of the carbon, about
1.9 Gt. Are undisturbed tropical forests storing any of this carbon, and if so,
what factor or set of factors is responsible for this storage?

Recent reviews of the global carbon budget suggest that three factors lead to
increased carbon storage: forest regrowth following harvest; nitrogen deposi-
tion, especially downwind of the industrial and agricultural regions; and CO2
fertilization (3, 76, 77). The first two factors are thought to be operating primar-
ily in the mid-latitudes of the northern hemisphere, whereas CO2 fertilization
is considered to be operating globally, including in tropical forests.

Both field studies and theoretical models support the idea that CO2 fertil-
ization of undisturbed tropical forests can result in enhanced carbon storage
in terrestrial biomass. Two gas-flux studies in undisturbed tropical forests of
Brazil’s Amazon Basin have shown that photosynthetic gains of carbon diox-
ide exceeded respiratory losses during the measurement periods. Fan et al (78)
reported a net carbon uptake of about 0.06 g m−2 day−1 over a 50-day period
during 1987 by an undisturbed forest near Manaus in the central Amazon.

Grace et al (79) made measurements of carbon dioxide flux over undisturbed
tropical rain forest at Reserva Jaru, Rondonia, in the western Amazon Basin
of Brazil, for 55 days spanning the wet and dry seasons of 1992–1993. In the
dry season, the mean accumulation rate was 1.1 g C m−2 day−1; in the wet
season the rate was 0.6 g C m−1 day−1. They then developed a model that
related net carbon flux to daily changes in light, humidity, and temperature
(80). They used site-specific climatological data to run the model for 1 year
(July 1, 1992—June 30, 1993). Over this period, the model estimated a carbon
accumulation of 102 ± 24 g C m−2 year−1. If all the rain forests of the Brazilian
Amazon (400 × 106 ha) were behaving in the same way as Reserva Jaru, the
carbon accumulation in this region would be 0.41 Gt C year−1.

Theoretical models also predict an accumulation of carbon in the world’s
tropical forests as a result of increased CO2 concentrations. Both Polglase &
Wang (81) and Taylor & Lloyd (82) predict a net absorption by all tropical
forests worldwide of about 1 Gt C year−1 at contemporary levels of atmo-
spheric CO2 concentration. Melillo et al (77), using the Terrestrial Ecosystem
Model (TEM), have estimated that the observed increase in CO2 concentra-
tion has lead to a net uptake of carbon in the tropics of about 0.5 Gt C year−1

for 1990. Net carbon uptake results from an imbalance between net primary
production and heterotrophic, largely microbial, respiration. Simulations us-
ing TEM suggest that soon after the atmospheric CO2 concentration stabilizes,
heterotrophic respiration comes into balance with net primary production and
the CO2-stimulated terrestrial carbon sink disappears.
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ROLE OF TROPICAL FORESTS IN THE GLOBAL
CARBON BUDGET

An evaluation of the role of tropical regions in the global carbon budget must
include both the carbon flux to the atmosphere due to deforestation and carbon
accumulation in the undisturbed forests due to CO2 fertilization.

The estimated range for carbon loss to the atmosphere due to deforestation
in 1990 is 1.2–2.3 Gt C (71), and the estimated range for carbon gain on land
due to CO2-stimulated carbon accumulation for 1990 is 0.5–1.0 Gt C (77, 81,
82). When these estimates are combined, the tropical regions of the globe
are estimated to be functioning as a net source of carbon to the atmosphere of
between 0.2 and 1.8 Gt C.

This range must be regarded as very tentative. The net flux of carbon between
the land and the atmosphere in the tropics could be influenced by interannual
variations in climate (77, 79, 83–85) that could cause this region to function as a
net carbon sink in some years and an even larger source than 1.8 Gt C in others.
Keeling et al (86), who measured trends in atmospheric concentrations of O2
compared to N2, suggest that, for the period 1990–1994, the tropical biota as a
whole were not a strong source or sink of CO2. They argued that releases of
CO2 from tropical deforestation must have been offset by CO2 uptake occurring
elsewhere in the tropics.

Any Annual Review chapter, as well as any article cited in an Annual Review chapter,
may be purchased from the Annual Reviews Preprints and Reprints service.

1-800-347-8007; 415-259-5017; email: arpr@class.org. Visit
the Annual Reviews home page at

http://www.annurev.org.
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