Horse-chestnut. Sapindaceae (formerly Hippocastanaceae).

Aesculus hippocastanum L. (A. asplenifolia Loud., A. castanea Gilib., A. heterophylla Hort. ex Handl., A. ohiotensis Lindl., A. incisa Hort. ex Handl., A. memmingeri C. Koch, A. procera Salisb., A. septenata Stokes, *Esculus hippocastanum* (L.) Raf., *Hippocastanum aesculus* Cav., *Hippocastanum vulgare* Gaertn., *Pawia hippocastanum* (L.) Kuntze) is a large deciduous tree with a wide-spreading, flat-topped crown up to 20 m across, branches upswept at first, then dipping down to form low spreading limbs that turn sharply up at the ends. Height up to 25 (–39) m tall, trunk up to 190 cm diameter. Bark dark grey-brown,

Abstract

1. This account presents information on all aspects of the biology of *Aesculus hippocastanum* L. (horse-chestnut) that are relevant to understanding its ecological characteristics and behaviour. The main topics are presented within the standard framework of the *Biological Flora of the British Isles*: distribution, habitat, communities, responses to abiotic factors, responses to environment, structure and physiology, phenology, floral and seed characters, herbivores and disease, history and conservation.

2. *Aesculus hippocastanum* is a large deciduous tree native to the Balkan Peninsula. Native populations are small (<10,000 trees total) and apparently in decline, but the tree has been widely planted in gardens and streets across Europe and other temperate areas from the 17th century onwards. It was voted the UK’s favourite tree in a 2017 poll. As a British neophyte, it is occasionally naturalised in open wooded habitats.

3. Horse-chestnut is renowned for the beauty of its large (up to 30 cm long), upright panicles of white flowers, and for the large seeds (up to 42 g each) used in the formerly common children’s game of “conkers.” More recently, the triterpene glycosides, extractable from various plant parts but especially the seeds, have been widely used in medicine.

4. In much of Europe, horse-chestnut is affected by chestnut bleeding canker (caused by *Pseudomonas syringae* pv. *aesculi*), the horse-chestnut leaf miner *Cameraria ohridella* and the leaf blotch fungus *Guignardia aesculi*. The canker is likely to lead to death of <10% individuals, but seeds of plants infested with the leaf miner are 40%–50% smaller, which may affect long-term establishment in non-planted areas.

Keywords

Cameraria ohridella, chestnut bleeding canker, conservation, geographical and altitudinal distribution, germination, herbivory, mycorrhiza, reproductive biology

Peter A. Thomas1 | Omar Alhamd1,2 | Grzegorz Iszkuło3,4 | Monika Dering3,5 | Tarek A. Mukassabi6

1School of Life Sciences, Keele University, Staffordshire, UK
2College of Education for Pure Science, University of Mosul, Nineveh, Iraq
3Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
4Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
5Poznań University of Life Sciences, Department of Forest Management, Poznań, Poland
6Department of Botany, University of Benghazi, Benghazi, Libya

Correspondence

Peter A. Thomas
Email: p.a.thomas@keele.ac.uk
smooth when young, and on mature trees forming long fine scales that become detached at both ends before falling. Twigs stout, pale grey or brown, glabrous with pale lenticels. Buds large, 2.5–5 cm, ovoid, deep red-brown, resinous and very sticky. Leaves opposite, large (≤60 cm wide), with a long (7–20 cm) terete petiole, palmate with five to seven leaflets, each (8)10–20(25) cm long, the terminal one the largest. Leaflets sessile, obovate, long cuneate at base, usually acuminate, irregularly crenate–serrate or serrate–dentate, dark green, glabrous above, somewhat tomentose beneath when young, often glabrous at maturity, joined to the petiole by a pulvinus-like leaflet base.

Inflorescence a large (15–30 × 10 cm), terminal, erect, conical to cylindrical panicle, andromonoecious with male flowers at the top of the panicle and hermaphrodite flowers below. Flowers zygomorphic. c. 2 cm across; sepals 5 forming a tubular or campanulate, toothed calyx; petals 4–5, each c. 1 cm, white with basal spots at first yellow then pink. In Poland, Weryszko-Chmielewska, Tietze, and Michońska (2012) found 56% 4-petalled and 44% 5-petalled flowers. Stamens 5–9 of variable length within the same flower, mostly longer than petals and arched downwards; pollen red. Ovary 3-celled, each cell with two ovules; single style small and simple, stigma minute. Male flowers with a small non-functional pistil and an underdeveloped ovary. Nectary a lobed disc. Only 2–5(8) flowers at the base of the panicle develop fruit. Fruit 5–8 cm diameter, subglobose, spiny with 1 (rarely 2 or 3) seeds or "conkers." Seed a large lustrous or glossy, glabrous, smooth, red-brown nut, 34–48 × 25–37 mm, ellipsoid, the radicular lobe visible as a low, broad dark ridge especially in dried nuts; hilum large, white, circular or elliptic.

Aesculus contains between 12 and 19 extant species (Harris, Xiang, & Thomas, 2009; Xiang, Crawford, Wolfe, Tang, & Depamphilis, 1998) with most authors recognising 12 or 13 species (Forest, Drouin, Charét, Brouillet, & Bruneau, 2001; Hardin, 1960; Koch, 1857; Zhang, Li, & Lian, 2010). Aesculus hippocastanum is the only European species within Section Aesculus along with A. turbinata Blume from Japan (Zhang et al., 2010). The genus is otherwise confined to North America and South and East Asia (Forest et al., 2001; Xiang et al., 1998).

Bean (1976) and Bellini and Nin (2005) list a number of varieties, cultivars and forms. Of these, A. hippocastanum ‘Baumannii’ is particularly common; this is a double-flowered, fruitless variety (Hoar, 1927) planted where conker hunting by children has been seen as a problem (Leathart, 1991). Aesculus hippocastanum ‘Pyramidalis’ is becoming more common; this reaches 25 m with a conical or narrowly pyramidal crown when young, becoming more ovate at maturity. Only one hybrid is known (Section 8.2).

Aesculus hippocastanum is native to the Balkan Peninsula in south-east Europe but has been widely planted in temperate areas from the 17th century onwards. As a neophyte, it is widely naturalised in Europe, though only partially so in Britain where it was known from the wild by 1870 (Preston, Pearman, & Dines, 2002). It is often self-sown in grassy places, copses, thickets, hedges and rough ground throughout lowland Britain and into west and central Europe.

Horse-chestnut is best known as a tree planted for ornamentation and shade in parks and streets, particularly by the Victorians (Rackham, 1986), since little else can rival the sight of a horse-chestnut in full flower. Indeed, it was voted the UK’s favourite tree in 2017 in a poll run by the Royal Society of Biology (Royal Society of Biology, 2017). The British population is an estimated 470,000 trees.

1 | GEOGRAPHICAL AND ALTITUDINAL DISTRIBUTION

Aesculus hippocastanum has been extensively planted throughout the British Isles and has continued to expand its range through naturalisation into a range of open habitats. It is most frequent in the south and east of England, becoming less common in the wetter areas of west Ireland and northern Scotland (Figure 1) and upland areas of Scotland. Nevertheless, even in these areas it can be found planted in urban areas and gardens and has even been planted in policy woodlands on Hebridean islands such as Rhum (Batten & Pomeroy, 1969) although it is now rare (Pearman, Preston, Rothero, & Walker, 2008). Hill, Preston, and Roy (2004) list horse-chestnut as being present in 2,186 10-km squares in Great Britain and the Isle of Man (80%), 557 in Ireland (57%) and 12 in the Channel Islands (86%).

Aesculus hippocastanum is native to mountains of the Balkans in south-east Europe (Figure 2). The biggest native populations are in mainland Greece, in the central Thessaly Mountains and northern Pindos range and in the southern counties of Evrytania and Fthiotida between 40°20’N, 21°05’E and 38°37’N, 22°26’E (Avtzis, Avtzis, Vergos, & Diamandis, 2007; Walas et al., 2018). Tsiroukis (2008) counted a total of 1,464 adult horse-chestnut trees across all 98 known populations in the mountains of Greece; 38% of all individuals were in the Pindos Mountains. Populations varied from 1 to 153 individuals, and 63% of populations had <10 trees. Its native range also includes populations in Albania, the Republic of Macedonia, Serbia and eastern Bulgaria (Anchev et al., 2009; Evstatiieva, 2011; Gussev & Vulchev, 2015; Peçi, Mullaj, & Dervishi, 2012). These populations are variable in size within and between countries. Albania has <500 individuals, with populations of <50 individuals and most containing 10–15 individuals (L. Shuka, pers. comm. 2017 cited in Allen & Khela, 2017). The Macedonian population is probably <100 individuals, and the Bulgarian populations are probably smaller (Allen & Khela, 2017; Peçi et al., 2012). The total extent of its native extent range is estimated to be 163,642 km², c. 25% of the Balkan Peninsula (Allen & Khela, 2017).

Horse-chestnut has, however, been extensively planted since the 17th century (Section 10) across central Europe and south into Italy and Serbia (Figure 2). It is also grown widely in urban areas of Iran, northern India, Asia Minor, United States, Canada (as far north as Edmonton, Alberta) and New Zealand (Kapusta et al., 2007; Loenhart, 2002; Zhang et al., 2010) and further north in the Faeroe Islands, Iceland and Norway (Høgdaard, Jøhansen, & Ødum, 1989), still producing fruit at 65°N in Sweden and Norway (Bellini & Nin, 2001; Depamphilis, 1998) with most authors recognising 12 or 13 species (Forest, Drouin, Charét, Brouillet, & Bruneau, 2001; Hardin, 1960; Koch, 1857; Zhang, Li, & Lian, 2010). Aesculus hippocastanum is the only European species within Section Aesculus along with A. turbinata Blume from Japan (Zhang et al., 2010). The genus is otherwise confined to North America and South and East Asia (Forest et al., 2001; Xiang et al., 1998).

Bean (1976) and Bellini and Nin (2005) list a number of varieties, cultivars and forms. Of these, A. hippocastanum ‘Baumannii’ is particularly common; this is a double-flowered, fruitless variety (Hoar, 1927) planted where conker hunting by children has been seen as a problem (Leathart, 1991). Aesculus hippocastanum ‘Pyramidalis’ is becoming more common; this reaches 25 m with a conical or narrowly pyramidal crown when young, becoming more ovate at maturity. Only one hybrid is known (Section 8.2).

Aesculus hippocastanum is native to the Balkan Peninsula in south-east Europe but has been widely planted in temperate areas from the 17th century onwards. As a neophyte, it is widely naturalised in Europe, though only partially so in Britain where it was known from the wild by 1870 (Preston, Pearman, & Dines, 2002). It is often self-sown in grassy places, copses, thickets, hedges and rough ground throughout lowland Britain and into west and central Europe.
2005). It was introduced into the United States most probably in 1746 in Philadelphia (Anon, 1925).

Horse-chestnut is generally found in the lowlands of Britain but reaches 505 m altitude at Ashgill (Cumberland) (Preston et al., 2002) and 1,300 m in Sweden and Norway (Bellini & Nin, 2005). It occurs at 218–1,485 m in its native range in Greece and Bulgaria, and up to c. 1,600 m in Albania (Avtzis et al., 2007; Horvat, Glavac, & Ellenberg, 1974; Leathart, 1991; Peçi et al., 2012; Walas et al., 2018). In Greece, 35% of individuals and 31% of populations are found between 900 and 1,000 m, and 72% of adult trees grow between 500 and 1,000 m (Tsiroukis, 2008).

2 | HABITAT

2.1 | Climatic and topographical limitations

The mean January temperature within the 10-km squares in which horse-chestnut occurs within Britain, Ireland and the Channel Islands is 3.6°C, and the mean July temperature is 14.8°C (Hill et al., 2004). Within the same area, the mean annual precipitation is 1,014 mm. These figures are, of course, very similar to other trees that have a distribution extending over much of Britain, such as Fraxinus excelsior and Acer pseudoplatanus.

Across its range, horse-chestnut is a mesophytic tree, adapted to warm-temperate climates. Walas et al. (2018) modelled its climatic requirements over the whole of its native range in the Balkan Peninsula and concluded that the main limitations to its distribution were high precipitation in the coldest quarters of the year and low precipitation in the warmest. It is also limited by a wide range in annual temperature, preferring those areas without temperature extremes. These limitations appear to act primarily through humidity, which was seen as the main factor limiting distribution. Where humidity is low, such as in Mediterranean and urban areas, high soil moisture and low stomatal conductance (Section 6.5) appear to be important in helping horse-chestnut survive (Walas et al., 2018). Certainly, the native populations in Greece rely on high air humidity.

FIGURE 1 The distribution of Aesculus hippocastanum in the British Isles. Each dot represents at least one record in a 10-km square of the National Grid. (●) non-native 1970 onwards; (○) non-native pre-1970. Mapped by Colin Harrower, Biological Records Centre, Centre for Ecology and Hydrology, mainly from records collected by members of the Botanical Society of Britain and Ireland, using Dr A. Morton’s DMAP software
resulting from the presence of open water, and undoubtedly high soil moisture. Tsiroukis (2008) found 62% of populations in ravines with constantly flowing water, 12% in humid forests, 11% in ravines with intermittent flow and 6% on arid slopes by roads. It is likely that the recalcitrant nature of the seeds (Section 8.4), and their intolerance of desiccation, is the main factor limiting horse-chestnut naturally to moist sites (Horvat et al., 1974), and explains why seedlings, past this vulnerable stage, can be successfully transplanted into a wide range of climatic conditions from woodlands to harsh, dry urban areas.

There appear to be few topographical limitations as horse-chestnut grows on flat urban sites and is found on steep slopes and in ravines within its native range (Thalmann, Freise, Heitland, & Bacher, 2003; Tsiroukis, 2008). In Bulgaria, it grows up onto steep slopes and scree (Horvat et al., 1974; Péć et al., 2012; Walas et al., 2018) that reach 25–60° (Gussev & Vulchev, 2015). In Albania, it is found on limestone rocky slopes of valleys and canyons (Allen & Khela, 2017). The importance of aspect is unknown but is likely to be related to the need for moisture.

2.2 | Substratum

The optimum soils for horse-chestnut are generally deep, siliceous, free-draining and rather fertile soils (Fitter & Peat, 1994; Tsiroukis, 2008). The Ellenberg value for nitrogen (N) corrected for Britain is 7 (Hill et al., 2004), which is slightly higher than associated with Fraxinus excelsior, Acer platanoides and Tilia cordata (all 6). Similarly, the Ellenberg value for moisture (F) is 5, indicating a moist site, similar to the requirement by many deciduous trees. Moist, CaCO₃-rich and fertile soils produce a strong, flat root system in horse-chestnut, but poorer soils result in horse-chestnut growing a shallow but much more extensive root system (Karliński et al., 2014). Simon and Lena (2016) and Poljanšek and Lena (2016) found that radial growth of street trees in Slovenia was positively associated with soil moisture, underlining the importance of moisture.

In its native range, horse-chestnut is usually restricted to moist but well-drained stony soil (often in moist depressions). In Bulgaria and Albania, horse-chestnut grows on calcareous soils derived from limestone (Allen & Khela, 2017). These medium-deep soils are slightly acidic on the surface and more alkaline at depth (Gussev & Vulchev, 2015). Horse-chestnut will, however, cope with being planted on a range of soils from nutrient-poor sand to heavy clay, from acid to alkaline although an optimum pH of 6.6–7.2 is recommended (Puchalski & Prusinkiewicz, 1975). The Ellenberg value for reaction (R) in Britain is 7, the commonest requirement by plants in Britain, indicating an association with weakly acidic to weakly basic conditions and never on very acidic soils (Hill et al., 2004).

3 | COMMUNITIES

In Britain, horse-chestnut is frequently planted in urban and rural settings such as in estates, parks and gardens (Whitney & Adams,
1980), churchyards, urban streets and village greens. It is also found in a large number of planted woodlands resulting “from the Victorian forester’s habit of trying everything” (Rackham, 2003). Horse-chestnut is often self-sown in open habitats, such as unmanaged scrub, waste ground or rough grassland. As such, it is rarely found in semi-natural vegetation types in Britain. It does occasionally regenerate locally in woodland but is seldom naturalised in native woodland (Preston et al., 2002; Rackham, 2003). The exception is as an infrequent member of W12 Fagus sylvatica–Mercurialis perennis woodland (Rodwell, 1991) where it has become naturalised in some places and locally abundant.

In mainland Europe, it is planted in a wide range of urban and garden areas and is naturalised in grassy places, copses, thickets and hedges and rough ground through west and central Europe (Łukasiewicz, 2003).

In its native range in Greece, it is found in the conifer and mixed broadleaf forest ecoregion (WWF, 2013). On dry and rocky south-facing slopes, it is found with evergreen oaks (WWF, 2013), which is common through the Middle East and into Asia. In moist mountainous valleys, horse-chestnut is found with Abies cephalonica, Juglans regia, Ostrya carpinifolia, Platanus orientalis and Alnus incana (Leathart, 1991) and in cooler places with Abies borisii-regis (which forms 52% of the total tree population in native stands), Fraxinus ornus (41%), Fagus sylvatica (37%), Platanus orientalis (12%), Salix alba (11%) and Juniperus communis (10%) (Tisroukis, 2008). Further north on the north-east face of Mount Ossa in central Greece, horse-chestnut grows with Tilia platyphyllos in the formation Aesculus hippocastanum–Tilia platyphyllos (Raus, 1980).

In the Preslavskaya Mountain of the East Balkan Range in Bulgaria, horse-chestnut is present in deciduous forests that are a relict vegetation type typical of the northern Mediterranean that was more widespread in the past (Gussev & Vulchev, 2015). The stands form three associations within the formation Aesculea hippocastani: Aesculus hippocastanum–subnudum, Aesculus hippocastanum–Carpinus betulus and more locally Aesculus hippocastanum–Aegopodium podagraria (Gussev & Vulchev, 2015). Horse-chestnut is usually dominant in all these, although 10%-20% of the crown may be composed of other species, particularly Acer platanoides, A. pseudoplatanus, Fagus sylvatica subsp. moesiaca, Juglans regia, Sorbus torminalis, Tilia tomentosa and Ulmus glabra. The horse-chestnuts can be up to 100 years old with a maximum DBH of 80–90 cm. Seed production is limited, and reproduction is primarily by root suckers. Cornus mas, C. sanguinea, Corylus avellana, Crataegus monogyna and Staphylea pinnata show high constancy among the shrubs. The herbaceous layer is sparse and species-poor and in the spring is typified by Anemone ranunculoides, Arum aequalis, Cardamine bulbifera, Corydalis bulbosa, C. solida, Erythronium dens-canis, Euphorbia amygdaloides, Isopyrum thalictroides, Mercurialis perennis, Milium effusus, Scilla bifolia, Symphytum tuberosum and Viola reichenbachiana. Horse-chestnut can also be found associated with Fagus sylvatica in the order Fagion sylvaticae (Peçi et al., 2012).

4 | RESPONSE TO BIOTIC FACTORS

The saplings of horse-chestnut are semi-shade-tolerant with an Ellenberg value for light (L) of 5 corrected for Britain (Hill et al., 2004) and so are tolerant of some competition for light. Although most adult trees are planted in the open or grow in open stands in its native range, it is able to persist in denser woodland communities (Section 3). Indeed, Hirons and Sjöman (2018) list horse-chestnut as being suitable for shaded late-successional conditions. This supports evidence that horse-chestnut will sometimes invade established woodlands in Britain although it is likely that this only happens in fairly open conditions. In eastern Europe, horse-chestnut is considered to be a competitive species that invades native woodlands, particularly where disturbed, growing as isolated trees or small patches (Chmura, 2004; Křivánek, Pyšek, & Jarošík, 2006).

Horse-chestnut has a dense crown and casts a deep shade. City trees in south-east Hungary transmitted just 7 ± 10% (SD) of full sunlight in mid-summer, increasing to 25 ± 14% at the end of September when half leafless due to the start of autumn abscission. At this point in autumn, there was more shade below horse-chestnut than cast by Staphylolobium japonicum (L.) Schott (=Sophora japonica) (15 ± 8%) and Tilia cordata (12 ± 13%) that were losing leaves, but less than Celtis occidentalis that was not yet shedding leaves (Takács, Kiss, Gulyás, Tanács, & Kántor, 2016), suggesting that horse-chestnut maintains its deep shade comparatively late into autumn, increasing its competitiveness. Certainly in most urban areas around Europe, little will grow beneath a group of horse-chestnut trees.

Horse-chestnut can tolerate atmospheric pollution and persists in polluted inner cities in Europe. Leaves collected in polluted areas of mainland Europe can appear small, curved and brittle, though the degree of pollution causing this is not stated (Godzik & Sassen, 1978). Pollution can alter the epidermis of leaves, particularly the adaxial surface, leading to it becoming porous or cracked with “abnormal” stomata (Godzik & Halbwachs, 1986; Godzik & Sassen, 1978). Horse-chestnut is listed as sensitive to chlorine and moderately sensitive to hydrogen chloride by Khan and Abbasi (2000) but tolerant to sulphur dioxide and hydrogen sulphide (Velagić-Habul, Lazarev, & Custović, 1991). Salt tolerance is considered in Section 5.3.

Due to its thin bark, horse-chestnut is sensitive to forest fires (Ravazzi & Caudullo, 2016). However, it will freely resprout from cut stumps and coppices well, although it is not often used in coppices since the poles grow slowly in comparison with other species such as Fraxinus excelsior and they are mechanically weak (Özden & Ennos, 2018).

Urban trees are tolerant of heavy pruning undertaken to maintain their aesthetic shape and to maintain access and sight lines (Cutler & Richardson, 1989), but large wounds can be problematic. Wounds over 15-20 cm in diameter heal poorly, and in Lithuania, c. 80% of such wounds have been seen to be infected by wood and pith rot after 2-4 years (Snieskiené, Stankevičienė, Zeimavičius, & Baležentiene, 2011).
5 | RESPONSE TO ENVIRONMENT

5.1 | Gregariousness

In planted areas throughout Europe, horse-chestnut is variably gregarious, obviously depending on the whims of each planting scheme. However, in many areas, groups or lines of horse-chestnuts are typically planted for visual impact or for shade. In native populations in Greece, horse-chestnut trees can grow close together, just a few metres apart, but density is variable. Walas et al. (2018) noted that the density of small trees (<1 m tall) varied from 31–33 to 1,017 trees/ha, intermediate-sized trees (1.1–10.0 m) from 53 to 339 trees/ha and the tallest trees (>10.1 m) from 16–20 to 565 trees/ha. There appeared to be no link between density and mean annual temperature or annual precipitation, but the highest densities were found at the lowest elevations (705–915 m) compared to lowest densities at 1,089–1,463 m. However, the availability of soil moisture (Section 2.1), topographical barriers and slope steepness, affecting the dispersal of seeds, must all also play their part in determining tree density in naturally regenerated populations.

5.2 | Performance in various habitats

Growth in Britain is rapid when young, with trees gaining 60–90 cm in height annually and with growth rates of 30 cm per year sustained for at least 60 years (Leathart, 1991), particularly in the east and south-east of England. In the less optimal conditions on acidic and nutrient-poor soils of pine stands in north-east Germany, the maximum height growth of horse-chestnut was 7 cm per year, the lowest of all 13 deciduous trees tested. In comparison, Acer pseudoplatanus grew 0.29 m per year and Sorbus aucuparia 0.65 m per year (Zerbe & Kreyer, 2007). As horse-chestnut matures, height growth slows, but annual increment is maintained such that in the city of Duisburg, Germany, Scholz, Hof, and Schmitt (2018) recorded horse-chestnut reaching 25 m tall at a DBH of 111 cm while Betula pendula at the same height had a diameter of <64 cm.

Across native populations in Greece, Walas et al. (2018) found that saplings (<1 m height) formed >50% of populations. They concluded that the abundance of seedlings and saplings showed that natural populations of horse-chestnut are capable of performing well and maintaining themselves under favourable management (Section 11).

For optimum growth, horse-chestnut requires shelter from high winds that would otherwise damage the large leaves (Bellini & Nin, 2005) and snap off branches, especially when combined with heavy, rain-soaked foliage (Mitchell, 1997). In extreme cases, this damage produces a characteristic standing trunk with few remaining branches. Horse-chestnut is unusual in that its branches are comparatively stiff so branches fall with a clean break rather than buckling (Özden & Ennos, 2018). The branches are stiffer than its coppice shoots, whereas for Acer pseudoplatanus and Fraxinus excelsior, it is the other way round; this may make the branches less flexible and more prone to snapping. Branches with fewer leaf nodes are stiffer, and, due to the large, compound leaves, horse-chestnut has a low number of leaves per length of stem (Özden & Ennos, 2018).

Although horse-chestnut grows well when planted in urban areas, growth is restricted in paved areas. A study of 231 mature A. hippocastanum trees growing in Munich, Germany (mean height 16.1 m, mean DBH 63.6 cm, mean crown width 5.5 m) were growing in non-paved areas with a mean of 15.08 m². A positive linear relationship was found between non-paved area in proportion to the crown projection area and basal area increment, presumed to be due to the limited water infiltration into paved areas (Dahlhausen, Biber, Rötzer, Uhl, & Pretzsch, 2016). Mean annual ring width was 1.61 mm (range 0.32–7.91 mm), the lowest mean of all species compared in cities around the world (mean ring width of other species ranged between 1.63 and 5.30 mm). As such, it was the slowest growing tree, reaching a DBH of c. 80 cm at 160 years old with a biomass of 3.5 t per tree (Dahlhausen et al., 2016). They also found a positive relationship between stem diameter and height and crown radius. Performance in urban areas can be improved by injecting sucrose solution (50 g/L) into the soil around the roots. Percival, Fraser, and Barnes (2004) found this to increase fine root dry mass (>4 mm diameter) from 0.24 to 1.17 g/m³ 5 months after treatment. This was also seen to work for Betula pendula and Quercus robur but not Prunus avium.

Paulić, Drvodelić, Mikac, Gregurović, and Oršanić (2015) found that horse-chestnuts in urban environments of Croatia displayed a positive correlation of radial stem growth with average spring precipitation and a negative correlation with maximum spring air temperatures. Similarly, Wilczyński and Podlaski (2007), working with horse-chestnuts growing in a Fraxino-Alnetum community in south-central Poland and using tree ring width data from 1932 to 2003 from 15 trees without Cameraria ohridella infections (see Section 9.1.1), found a positive correlation of radial growth with air temperature of the previous winter (December to March) and of summer (August) in the growing season, and with precipitation of the previous winter. However, excessive precipitation in August, which raised the already high water-table, had a negative effect on radial growth. Warm year-round temperatures in a continental climate would go some way to mimicking temperatures in its native habitats, although the negative effect of high spring temperatures is likely due to drought and low humidity. Similarly, horse-chestnut favours moist habitats (Section 2.2), so high rainfall short of causing flooding of roots would be beneficial. In native Greek populations, leaves with the smallest leaflets (8.6 ± 1.35 cm²; SE, n unstated) were found in the most northerly population with the lowest mean annual temperature (7.3°C). However, the precise effect of environmental parameters on performance is not always easy to disentangle. In Greece, leaves were significantly larger and longer in the Karitsa population than in the more northerly Perivoli population (69.22 ± 4.04 cm², 50.10 ± 2.26 cm², and 15.16 ± 0.48 cm, 13.48 ± 0.34 cm, respectively; Karitsa is at lower altitude (Karitsa 705 m, Perivoli 915 m) and had a higher mean annual temperature (12.4°C, 10.5°C, respectively) but lower precipitation (553 mm, 830 mm, respectively) (Walas et al., 2018).
5.3 | Effect of frost, drought, etc

After the juvenile growth phase, horse-chestnut is relatively hardy and generally tolerates low winter temperatures well (Bellini & Nin, 2005). However, Wilczyński and Podlaski (2007) argued that long cold continental winters negatively affect the tree in the subsequent growing season since it “weakened the trees” and delayed the start of the growing season. But they also point out that horse-chestnut “survived through many frosty and long winters in the 20th century” and so cold is not seen as a lethal problem. Snow may help survival in continental climates, such as in Poland, by protecting roots and root collar from frosts (Wilczyński & Podlaski, 2007).

Large temperature fluctuations, particularly at the end of winter and into spring, have been seen to cause stem fissures in horse-chestnuts in open urban areas of central and eastern Europe. These fissures are invaded by the fungus Schizophyllum commune Fr. (Basidiomycota, Agaricales) which is saprotrophic but can become parasitic causing white surface rot (Snieskiene et al., 2011).

The wood anatomy of horse-chestnut suggests a moderate amount of drought tolerance. Jansen, Choat, and Pletsers (2009) measured the maximum diameter of pit membranes between vessels as 179 nm, with an air-seeding threshold of 1.62 ± 0.36 MPa, in a range of 0.95 MPa in Betula pendula to 2.8 MPa in Laurus nobilis. However, A. hippocastanum is often considered unsuitable for dry urban areas due to its moderate sensitivity to drought (Hirons & Sjöman, 2018; Roloff, Korn, & Gillner, 2009) and the hybrid A. carnnea (Section 8.2) is preferred in central European parks and gardens as it is more drought-tolerant. Simon and Lena (2016) report that street trees in Ljubljana, Slovenia, that were water-stressed due to low May–July precipitation underwent delayed cambial activity from the start of May to end of June, whereas in “healthy” trees, it was middle of April to middle of July. Juvenile horse-chestnuts are more sensitive to water stress than adults, due to their more restricted root spread, resulting in yellowing and falling of the leaves (Bellini & Nin, 2005). The resin on the “sticky buds” is thought to help increase resistance to drought.

Grosse and Schröder (1985) looked at gas transport through stems of leafless 6-month-old trees as an indication of their ability to cope with flooding. They found that gas transport in horse-chestnut was 136% higher in the light compared to the dark due to temperature differentials, leading to increased gas exchange between root and shoot of flooded trees during the day. This compares to <25% increase in Carpinus betulus, Acer pseudoplatanus, Fagus sylvatica and Fraxinus excelsior, and a 314% increase in Alnus glutinosa. This suggests that horse-chestnut can cope moderately well with temporary flooding or anoxic soils (Hirons & Sjöman, 2018).

Horse-chestnut is generally tolerant of saline soils and urban salt spray (Chaney, 1991; Šerá, 2017) although some authors have described it as being sensitive to salt spray (Dobson, 1991). Horse-chestnut is more tolerant to saline soil and spray than Fagus sylvatica and Tilia cordata and to a lesser extent Acer pseudoplatanus. But horse-chestnut does not tolerate long-term maritime exposure; Hill et al. (2004) list the Ellenberg value (corrected for Britain) for salt tolerance (S) as 0, indicating an absence from saline sites and a short life span in coastal sites.

Direct application of saturated salt solutions to horse-chestnut buds delayed bud break for up to 8 days (Paludan-Müller, Saxe, Pedersen, & Randrup, 2002). Street trees in Poznań, Poland, exposed to de-icing salt had foliar Cl concentrations of 4.9 mg/g dry mass (Oleksyn, Kloeppel, Łukasiewicz, Karolewski, & Reich, 2007), 43% higher than the toxic level of 3.5 mg/g dry mass in sensitive trees (Marschner, 1995). In street trees in Berne, Switzerland, Fuhrer and Erismann (1980) recorded foliar Cl of 8–14 mg/g dry mass in horse-chestnut, associated with 25% leaf area necrosis.

Eckstein, Liese, and Ploessl (1978) found a significant reduction in annual ring width of horse-chestnuts growing 0.5 m from a road edge in Freiburg, Germany, after salt was first used in the mid-1960s. Growth was so reduced that between 1970 and 1973, annual rings were virtually non-detectable, and by 1974, the trees were dead. Control trees away from salty roads were unaffected. Petersen and Eckstein (1988) recorded a similar decline following the use of salt in Hamburg. Trees declining from high salt levels showed a similar wood anatomy to drought-stressed trees; more but smaller xylem vessels, and smaller wood rays and fibres, which were replaced by parenchyma making the stems weaker and less effective in water transport (Eckstein, Liese, & Parameswaran, 1976; Petersen & Eckstein, 1988).

6 | STRUCTURE AND PHYSIOLOGY

6.1 | Morphology

Aesculus hippocastanum is a large tree, reaching 39 m height. The current largest tree in Britain is 36 m height and 187 cm DBH in Kettering, Northamptonshire. An exceptional tree in Andover, Hampshire, has been recorded with a trunk of 304 cm DBH (The Tree Register, 2018). In urban areas, it can commonly reach between 16 and 20 m but can be up to 25 m in height (Cutler & Richardson, 1989). Branching is initially monopodial, extending shoot length from the apical buds. However, upon sexual maturity, flowers are borne at the apex of shoots, so subsequent growth is sympodial from lateral buds.

The wood is diffuse-porous, with spiral grain (Pyszyński, 1977), close-grained and white. It has a low density (0.5 g/cm³), lower than many conifers, and the wood lacks strength and durability. The nitrogen content of wood at 0.32% is higher than many broadleaf species (Robinson, Tudor, & Cooper, 2011), likely decreasing its resistance to decay. As with most trees, there is an overall increase in vessel diameter and length from the small branches (28 and 208 μm, respectively) down to roots c. 15 mm in diameter (57 and 439 μm, respectively) but vessel density becomes less, reducing from 400 per mm² in small branches to 53 per mm² in roots (Poole, 1994). Tyloses (outgrowths of parenchyma cells into the vessels of heartwood) are not formed (Barnett, Cooper, & Bonner, 1993). The bark has a small
proportion of lenticels containing embedded waxes (3%), compared to up to 35% in other species tested (Groh, Hübner, & Lendzian, 2002). The ratio of water vapour loss through lenticels from which waxes were extracted using chloroform compared to control lenticels was 1.7, suggesting that the waxes may reduce water loss. However, Groh et al. (2002) concluded that this did not affect water loss through the bark to a large degree.

Roots can be shallow to moderately deep, depending upon the soil type, and, as befitting a large tree, can spread a considerable distance beyond the crown. Cutler and Richardson (1989) record the maximum distance that a building has been damaged by horse-chestnut roots on clay soils as 23 m with 90% of cases being within 15 m of the tree. This is similar to Acer pseudoplatanus and Ulmus spp. and not far short of Quercus spp. (maximum distance 30 m, 90% of cases within 18 m). Fine root (<0.8 mm diameter) biomass in Poland and not far short of ecoregion, to 118 per mm², 19.03 × 11.30 important; in North Bosnia and Herzegovina, Oljača, Govedar, and tion of the Black Sea ecoregion. Position within the crown is also been seen to vary across Europe from 118 to 298 per mm². Some of Weryszko-Chmielewska & Haraty m (2012) observed that c. 40% of roots tips of horse-chestnut were mycorrhizal in rural trees and c. 17% in urban areas of southern Ontario (estimated from a figure), similar to many other arbuscular mycorrhizal trees. However, Karlinski et al. (2014) found no difference between rural and urban sites in Poland, colonisation ranging from 54% to 73% of root tips. The differences may be due to Bainard et al. (2011) sampling 20- to 35-year-old trees in May-June while Karlinski et al. (2014) sampled c. 100-year-old trees in November, since age and/or establishment does appear to affect mycorrhizal colonisation. Ferrini and Fini (2012) inoculated horse-chestnut trees in Milan with a mixture of arbuscular fungi growing in heavily compacted soil. One year after inoculation, the frequency of arbuscular roots (51%–59%) was not significantly different between inoculated and control newly planted trees 6–8 cm diameter, but in mature trees (38–51 cm diameter), colonisation was significantly higher in inoculated trees (76%) compared to control trees (63%). However, in both age groups, shoot growth in the third growing season was significantly longer in mycorrhizal trees than in controls (mature trees: mycorrhizal 8.8 cm, control 5.7 cm; young trees: mycorrhizal 13.7 cm; control 12.1 cm). This supports the suggestion that mycorrhizal inoculation in urban trees is worthwhile.

Karlinski et al. (2014) found 1%–9% of root tips colonised by fungal endophytes, low compared to that found in other broadleaved trees (Mandyam & Jumpponen, 2005).

6.2 | Mycorrhiza

Arbuscular mycorrhizal fungi are present on the roots of horse-chestnut (Harley & Harley, 1987) but, unlike many woody plants, there is no evidence of ectomycorrhizas. Bainard, Klironomos, and Gordon (2011) found that c. 40% of roots tips of horse-chestnut were mycorrhizal in rural trees and c. 17% in urban areas of southern Ontario (estimated from a figure), similar to many other arbuscular mycorrhizal trees. However, Karlinski et al. (2014) found no difference between rural and urban sites in Poland, colonisation ranging from 54% to 73% of root tips. The differences may be due to Bainard et al. (2011) sampling 20- to 35-year-old trees in May-June while Karlinski et al. (2014) sampled c. 100-year-old trees in November, since age and/or establishment does appear to affect mycorrhizal colonisation. Ferrini and Fini (2012) inoculated horse-chestnut trees in Milan with a mixture of arbuscular fungi growing in heavily compacted soil. One year after inoculation, the frequency of arbuscular roots (51%–59%) was not significantly different between inoculated and control newly planted trees 6–8 cm diameter, but in mature trees (38–51 cm diameter), colonisation was significantly higher in inoculated trees (76%) compared to control trees (63%). However, in both age groups, shoot growth in the third growing season was significantly longer in mycorrhizal trees than in controls (mature trees: mycorrhizal 8.8 cm, control 5.7 cm; young trees: mycorrhizal 13.7 cm; control 12.1 cm). This supports the suggestion that mycorrhizal inoculation in urban trees is worthwhile.

Karlinski et al. (2014) found 1%–9% of root tips colonised by fungal endophytes, low compared to that found in other broadleaved trees (Mandyam & Jumpponen, 2005).

6.3 | Perennation: reproduction

Phanerophyte. Reproduction is primarily by seeds, but occasionally, it will spread vegetatively by new shoots growing from adventitious buds on the roots of established trees up to 4–5 m from the trunk (Czekalski, 2005). Hill et al. (2004) classified horse-chestnut as not spreading clonally, but Howard (1945) noted that branches that touch the ground may root and produce new shoots. He describes such a tree at Hawkhurst Moor, Kent with a height of 27.4 m and a combined crown 27.6 m in diameter. Theoretically, such a tree can keep spreading laterally by the production of new semi-autonomous stems as the central stem(s) die. Layering has been confirmed in natural populations especially on rocky and steep slopes; for example, genetic analysis of 114 trees found 94 genotypes (Walas et al., 2018; M. Dering and G. Iszkul, pers. comm., September 7, 2018).
Horse-chestnut will also produce new stems on cut stumps and so will coppice (Czekalski, 2005).

Horse-chestnut can be grafted onto 1- or 2-year-old seedlings using dormant apical scions in mid-winter. Budding is also successful in late summer using medium size buds from the middle of a branch (McMillan-Browse, 1971). It can also be propagated using semi-hardwood cuttings (Chapman & Hoover, 1982), though this is uncommon. Horse-chestnut has been used as a rootstock in the grafting of other Aesculus species planted in Britain, such as A. octandra and A. carnea (Leathart, 1991).

Tissue culture has been successfully used to produce horse-chestnut plants from a variety of somatic and gametic sources including microspores (Radojević, 1978; Radojević, Marinkovic, & Jevremovic, 2000), anther filaments (Capuana, 2016; Jörgensen, 1989; Kiss, Heszky, Kiss, & Gyulai, 1992), embryos (Profumo, Gastaldo, Bevilacqua, & Carlì, 1991; Troch, Wrbrouck, Geelen, & Van Labeke, 2009), and leaf and stem explants (Dameri, Caffaro, Gastaldo, & Profumo, 1986; Gastaldo, Carlì, & Profumo, 1994; Šedivá, Vlašinová, & Mertelík, 2013). Embryogenic tissues can also be cryopreserved for long-term storage (Jekkel, Gyulai, Kiss, Kiss, & Heszky, 1998; Lambardi, De Carlo, & Capuana, 2005; Wesley-Smith, Walters, Pammenter, & Berjak, 2001), overcoming the storage problems of recalcitrant seeds (Section 8.4) (Pence, 1990). Anther and microspore cultures have been used to produce haploid plants in horse-chestnut (Čalić-Dragosavac, Stevović, & Zdravković-Korać, 2010). Up to 10%–12% of the embryos produced by these methods were found to be albino, particularly when grown under short days of 8 hr light, but the proportion could be reduced by the addition of abscisic acid to the cultures (Ćalić et al., 2013). Procedures for genetically modifying A. hippocastanum embryos using the bacterium Agrobacterium rhizogenes have been devised by Zdravković-Korać, Agrobacterium rhizogenes (1969) but can survive for 300 and exceptionally 500 years (Fitter & Peat, 1994), normally lives for a maximum of 150–200 years (Maurizio & Grafl, 2010). Up to 10%–12% of the embryos produced by these methods were found to be albino, particularly when grown under short days of 8 hr light, but the proportion could be reduced by the addition of abscisic acid to the cultures (Ćalić et al., 2013). Procedures for genetically modifying A. hippocastanum embryos using the bacterium Agrobacterium rhizogenes have been devised by Zdravković-Korać, 2003). Stomatal conductance in full sunlight in Gothenburg, Sweden, was measured by Konarska et al. (2016) at c. 80–90 mmol m⁻² s⁻¹, a similar figure to other deciduous trees tested such as Betula pendula, Fagus sylvatica and Tilia × europaea, but lower than Quercus robur (c. 200–210 mmol m⁻² s⁻¹—estimated from figures). Horse-chestnut should not therefore be at a disadvantage in low humidity conditions compared to many native trees.

Drought tolerance of horse-chestnut can be improved by spraying trees with the triazole (fungicide) derivatives paclobutrazol, penconazole, epoxiconazole and propiconazole. Percival and Noviss (2008) treated 4-year-old saplings transplanted into pots that 2 weeks later were exposed to a 3-week drought. Spraying reduced visible leaf necrosis by 33%–83% compared to drought-treated but unsprayed controls, and electrolyte leakage (a measure of cell membrane damage) by 36%–64%, depending upon the fungicide used. Chlorophyll fluorescence ratio (Fv/Fm) increased 59%–121% and light-induced CO₂ fixation increased by 16%–137%. Leaves of treated trees also had higher concentrations of total carotenoids (29%–2,891%), chlorophylls (53%–288%) and proline (42%–109%) and higher superoxide dismutase (23%–118%) and catalase (24%–133%) activities than drought-treated control trees. Treated trees also showed faster recovery after drought in the above characteristics. The triazole myclobutanil had no effect.

Horse-chestnut planted in poor soils in urban environments responds well to nutrient addition. Oleksyn et al. (2007) investigated street trees in Poznań, Poland, with a mean height of 13.6 m and 0.53 m DBH. Trees were given a mulch of organic matter (chipped tree waste stored for 1 year) and nutrient applications over 3 years of 17 g N m⁻² month⁻¹ for 2 years, then 7 g N and 16 g S m⁻² month⁻¹ for one further year. The treatments increased foliar N by 36% from 1.7% to 2.7% compared to control trees. Total phenolic concentration in treated trees was 43% lower than in control trees after 3 years of treatment (mean 256 μmol/g in control and 193 μg/g in treated) suggesting lower investment in secondary defence compounds in trees with better nutrition. Net photosynthesis per unit

with large seeds (Krahulcová, Trávníček, Krahulec, & Rejmánek, 2017).

6.5 | Physiological data

Horse-chestnut grows best in sunny, sheltered locations and is classified as shade-intolerant (Fitter & Peat, 1994), but it can tolerate partial shade (Jagodziński, Łukasiewicz, & Turzańska, 2003), especially as saplings. Young stems contain chlorophyll and are capable of photosynthesising (Skribanek, Apatini, Inaoka, & Böddi, 2000); the protochlorophyllide content (a precursor of chlorophyll) of horse-chestnut twigs was comparatively high at c. 10 μg/g fresh mass, compared to 3–5 μg/g in Acer campestre. In full sunlight, net photosynthetic rate has been measured in north-east Italy at 5–9 μmol [CO₂] m⁻² s⁻¹, stomatal conductance at c. 105 mmol m⁻² s⁻¹, transpiration rate at c. 2.4 mmol m⁻² s⁻¹ and leaf hydraulic conductance at 4.5 kg s⁻¹ m⁻² MPa⁻¹ (estimated from figures in Nardini, Raimondo, Scimone, & Salleo, 2004; Raimondo, Ghirardelli, Nardini, & Salleo, 2003). Stomatal conductance in full sunlight in Gothenburg, Sweden, was measured by Konarska et al. (2016) at c. 80–90 mmol m⁻² s⁻¹, a similar figure to other deciduous trees tested such as Betula pendula, Fagus sylvatica and Tilia × europaea, but lower than Quercus robur (c. 200–210 mmol m⁻² s⁻¹—estimated from figures). Horse-chestnut should not therefore be at a disadvantage in low humidity conditions compared to many native trees.

Drought tolerance of horse-chestnut can be improved by spraying trees with the triazole (fungicide) derivatives paclobutrazol, penconazole, epoxiconazole and propiconazole. Percival and Noviss (2008) treated 4-year-old saplings transplanted into pots that 2 weeks later were exposed to a 3-week drought. Spraying reduced visible leaf necrosis by 33%–83% compared to drought-treated but unsprayed controls, and electrolyte leakage (a measure of cell membrane damage) by 36%–64%, depending upon the fungicide used. Chlorophyll fluorescence ratio (Fv/Fm) increased 59%–121% and light-induced CO₂ fixation increased by 16%–137%. Leaves of treated trees also had higher concentrations of total carotenoids (29%–2,891%), chlorophylls (53%–288%) and proline (42%–109%) and higher superoxide dismutase (23%–118%) and catalase (24%–133%) activities than drought-treated control trees. Treated trees also showed faster recovery after drought in the above characteristics. The triazole myclobutanil had no effect.

Horse-chestnut planted in poor soils in urban environments responds well to nutrient addition. Oleksyn et al. (2007) investigated street trees in Poznań, Poland, with a mean height of 13.6 m and 0.53 m DBH. Trees were given a mulch of organic matter (chipped tree waste stored for 1 year) and nutrient applications over 3 years of 17 g N m⁻² month⁻¹ for 2 years, then 7 g N and 16 g S m⁻² month⁻¹ for one further year. The treatments increased foliar N by 36% from 1.7% to 2.7% compared to control trees. Total phenolic concentration in treated trees was 43% lower than in control trees after 3 years of treatment (mean 256 μmol/g in control and 193 μg/g in treated) suggesting lower investment in secondary defence compounds in trees with better nutrition. Net photosynthesis per unit

6.4 | Chromosomes

2n = 40 (Bennett, Smith, & Haslop-Harrison, 1982; Hardin, 1960). The hybrid, A. carnea (Section 8.2), is a tetraploid (2n = 80) according to Hoar (1927) and Hardin (1957). A backcross between A. carnea and A. hippocastanum is reported with 2n = 60 (Uptcote, 1936).

Skovsted (1929) noted that the chromosomes of A. hippocastanum were relatively small (c. 0.5 μm, estimated from a figure) while those of A. pavia were larger (c. 1 μm), and that A. carnea had a mix of both sizes. However, this appears to be an artefact of sample preparation since subsequent measurements have found the chromosomes in all three taxa to be similar at 1–2 μm long (Pogan, Wcislo, & Jankun, 1980; Uptcote, 1936).

Aesculus hippocastanum has a comparatively small nuclear genome size for a woody angiosperm at 1.22 ± 0.010 pg (2C), but such a small genome size is not unusual among woody species
area and unit mass both increased by 21%–30% in treated sites. Leaves became bigger (3.3 vs 1.8 g/leaf; 386 vs 248 cm²/leaf) and thicker (specific leaf area 119 vs 141 cm²/g). Leaves also remained on the tree longer (175 vs 130 days) and treated trees produced more seeds (>100 seeds vs <12 seeds/tree), but this was still half that of trees growing in the better soil of the nearby botanic garden.

6.6 | Biochemical data

Various parts of *Aesculus hippocastanum* contain high levels of triterpene glycosides or saponins, including aescigenin, hippocaesculin and barringtonenol (Konoshima & Lee, 1986), the mix collectively called aesculin, aescin or escin; these have medical uses (Section 10.1). Horse-chestnut also contains tannins, carotenoids (including aesculaxanthin, lutein and citraurin), fatty acids (including lauric, myristic, palmitic, stearic, arachic and oleic acids), at least 10 coumarin derivatives (including esculetin) and at least 15 flavonoids, mainly glycosides of quercetin, leucocyanidin, procyanidin and kaempferol (Birtić & Kranner, 2006; Coruh & Ozdogan, 2014; Czezuga, 1986; Deli, Matus, & Töth, 2000; Dudek-Makuch & Mattawska, 2011; Kapusta et al., 2007; Kędzierski, Kukula-Kocha, Wielidski, & Głowniak, 2016; Kim et al., 2017; Morimoto, Nonaka, & Nishioka, 1987; Turkeukel, Colpan, Baykul, Ozbek, & Erdogan, 2018; Yoshikawa, Murakami, Yamahara, & Matsuda, 1998; Zhang et al., 2010) and polyproenols including undecaprenol, tridecaprenol and particularly dodecaprenol and castoprenol (Khidyrova & Shakhidoyatov, 2002; Wellburn, Stevenson, Hemming, & Morton, 1967). The highest concentration of most chemicals is in the seeds, particularly the cotyledons but they are also found in the fruit, bark, leaves and buds (Bombardell, Morazoni, & Griffin, 1996; Otajagić, Pinjic, Ćavar, Vidic, & Maksimović, 2012) and in embryonic callus tissue (Profumo, Caviglia, Gastaldo, & Dameri, 1991). Abudayeh, Al Azzam, Naddaf, Karpiuk, and Kislichenko (2015) investigated seeds from Poland and found lower levels of saponins in the seed coat (0.19–0.32 g/kg) than the seed’s endosperm (34.9–52.05 g/kg). The sterols and a number of monoterpane phenols (e.g., carvacrol) in bark, quercetin and kaempferol in seeds, and at least 17 phenolic compounds in leaves (Hübner, Wray, & Nahrstedt, 1999; Oszmiański, Kalisz, & Aneta, 2014) are known to have antifeedant properties against insects (Eriksson, Månsson, Sjödin, & Schlyter, 2008. The highest concentration of coumarins is in the bark, particularly during summer, lower in spring and autumn (Matysik, Głowniak, Soczewiński, & Garbacka, 1994), emphasising their role as antifeedants. The buds of horse-chestnut are renowned for being "sticky." The abundant resin causing the stickiness contains relatively small amounts of flavonoids (13.0%) and larger amounts of triterpenoids (43.4%) but, most distinctively, high level of C₁₄–C₂₂ aliphatic 3‐hydroxyacids (20.1%). However, the resin had lower antimicrobial activity against gram-positive bacteria than resins of other deciduous trees, such as *Betula* spp and *Pinus sylvestris* (Isidorov, Bakier, Pirożnikow, Zambrzycka, & Świecicka, 2016). Leaves have epicuticular wax containing large amounts of triterpenols and triterpenol esters including β-amyrin, a-amin, lupeol, friedelanol and friedelanone (Gülz, Müller, & Herrmann, 1992). Despite the abundant wax, Papierowska et al. (2018) found that, based on the angle of contact of water droplets, the adaxial surface of horse-chestnut is "wettable" and the abaxial "highly wettable." This is similar to that found in *Acer pseudoplatanus* and *Betula pendula* but in contrast to 14 of the 19 European deciduous species tested where the abaxial surface was the least wettable. Although high wettability may result in a film of water reducing gas exchange, the authors suggest that it also allows water droplets to spread out and quickly evaporate and so leaves quickly dry, reducing the time that pathogens have a moist surface to invade, and so lower the need for internal chemical defences. This may be linked to the low precipitation of its native climate where gas exchange problems would be less frequent.

Seeds contain 30%–60% starch, 6%–11% protein, 4%–8% lipids and 8%–26% saponins (Baraldi et al., 2007; Ćukanović et al., 2011; Duke & Ayensu, 1985; Lemajić, Savin, Ivanić, & Lalić, 1985), but these are variable between populations. Seeds from southern Bulgaria contained 81 ± 3 g/kg (SD) of oils, including relatively high levels of unsaponifiable compounds (57 ± 1 g/kg, sterols (12 ± 2 g/kg), phospholipids (3 ± 0.1 g/kg) and tocopherols (627 ± 15 mg/kg) (Zlatanov, Antova, Angelova-Romova, & Teneva, 2012). The starch has a low amylose content (Hricovíniová & Babor, 1992). Seeds also contain sugars; thirteen compounds have been identified including glucose, sucrose, fructose, amylosaccharide, galactosylsucrose and fructosylsucrose (Hricovíniová & Babor, 1991; Kahl, Roszkowski, & Zurowska, 1969; Kamerling & Vliegenthart, 1972).

Atmospheric levels of heavy metals are reflected in their concentration on and in leaves and bark (Table 1). Levels in Turkey were comparatively low compared to levels in the soil (Pb, 0.81–6.75; Cd, 0.002–0.006; Zn, 2.20–4.60; Cu, 0.52–1.12 μg/g dry weight; Yilmaz, Sakcalli, Yarci, Aksoy, & Ozturk, 2006). Levels in Turkey tend to be lower than in Bulgaria and Serbia (Table 1); similar figures for Serbia are also found in Tomašević et al. (2004) and Deljanin et al. (2016). Washing leaves reduced levels of Pb, Ca, Zn and Cu, indicating that these are primarily surface particles (Yilmaz et al., 2006). Levels of Pb, Zn and Cu were very high in New Zealand, reported in Kim and Fergusson (1994) before lead-free petrol became legally compulsory. In the same leaded petrol era in Scotland, Guha and Mitchell (1966) found that Pb decreased towards the top of the crown consistent with a petrol origin. Aničić, Spasić, Tomašević, Rajšić, and Tasić (2011) found that horse-chestnut street trees in Serbia accumulated more heavy metals than did *Tilia* spp. and so are considered a better species for the assessment of Pb and Cu atmospheric pollution.
TABLE 1 Levels of heavy metals (μg/g dry mass) in various tissues of Aesculus hippocastanum in different geographical locations

<table>
<thead>
<tr>
<th>Element</th>
<th>Turkey 1</th>
<th>Bulgaria 2</th>
<th>Serbia 3</th>
<th>New Zealand 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Washed leaves</td>
<td>Unwashed leaves</td>
<td>Bark</td>
<td>Unwashed leaves</td>
</tr>
<tr>
<td>Pb</td>
<td>0.02–0.05</td>
<td>0.02–0.12</td>
<td>0.06–0.63</td>
<td>2.75</td>
</tr>
<tr>
<td>Cd</td>
<td>0.001–0.002</td>
<td>0.002–0.068</td>
<td>0.005–0.006</td>
<td>0.24</td>
</tr>
<tr>
<td>Zn</td>
<td>0.39–0.59</td>
<td>0.37–0.53</td>
<td>0.41–0.66</td>
<td>8.2</td>
</tr>
<tr>
<td>Cu</td>
<td>0.26–0.39</td>
<td>0.32–0.47</td>
<td>0.35–1.03</td>
<td>0.25</td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Sr</td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>As</td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
</tbody>
</table>

1Yilmaz et al. (2006); 2Petrova, Yurukova, and Velcheva (2012); 3Anićić et al. (2011), Kocić, Spasić, Urošević, and Tomašević (2014), Pavlović et al. (2017); 4Kim and Fergusson (1994).

Some studies have shown that levels of heavy metals in leaves increase through the growing season (e.g., Kim & Fergusson, 1994) while others have shown that they decrease (e.g., Šućur et al., 2010), depending upon the relative uptake from the soil and atmosphere, and seasonal changes in atmospheric pollution. Uptake of radionuclides from the soil is generally very low; the highest recorded for horse-chestnut was 40K, with a 1.3 soil:leaves transfer factor, giving a concentration of 487 Bq/kg, similar to that seen in Tilia spp. (Todorović, Popović, Ajtić, & Nikolić, 2013). However, 1 year after the Chernobyl reactor accident on 26 April 1986, horse-chestnut leaves contained the highest levels of 40K along with 37 Bq/kg of 212Pb and 11 Bq/kg of 208Tl (Heinrich et al., 1992). Cs-137 resulting from the Fukushima reactor accident in Japan can be tracked in leaves of a variety of trees, including horse-chestnut growing nearby.

7 | PHENOLOGY

The cambium of horse-chestnut begins cytoplasmic activity in mid-February; the first cell divisions on the phloem are produced in early April, and the first xylem elements are formed in the middle of April (Barnett, 1992). Radial growth continues until August in Poland (Wilczyński & Podlaski, 2007). Jagiełło et al. (2017) identified that in saplings c. 85% of the whole-year stem volume increment occurred before the end of July.

The winter chilling requirement for buds to flush (321 degree-days above 0°C) is similar or lower than many deciduous trees native to Britain (Laube et al., 2014). Leaf buds open in mid-April (Hutchings, Lawrence, & Brunt, 2012), 2–3 weeks earlier than Quercus robur (Fu, Campioli, Van Oijen, Deckmyn, & Janssens, 2012). Sparks, Jeffree, and Jeffree (2000) found the mean leafing date in Britain using a 20-year record was 10 April (earliest −10 days; latest +15 days). In Poznań Botanical Garden, Poland, the mean leafing date was 5 days later (Sparks, Górska-Zajączkowska, Wójtowicz, & Tryjanowski, 2011). The spring flushing of buds in horse-chestnut is primarily controlled by February and March temperatures in Britain, and March to May temperatures in Poland (Menzel et al., 2008; Tryjanowski, Panek, & Sparks, 2006) but it is also said to have a photoperiod requirement (Basler & Körner, 2012) that develops just before leaf flushing (Laube et al., 2014). Zohner and Renner (2015) found that budburst was delayed by 4 days when branches on mature trees were given 8-hr days rather than 16-hr days. This compares to a 41-day delay in Fagus sylvatica and no delay in Picea abies. Zohner and Renner (2015) concluded that the delay in budburst in horse-chestnut under short days is simply a consequence of slower growth as a result of lower light availability rather than a photoperiod requirement itself. There appears to be no elevational change in photoperiod requirement (Basler & Körner, 2012).

Flowering in Britain usually lasts between late April and the middle of May (Tryjanowski et al., 2006). Jeffree (1960) identified mean start of flowering as 9 May ±5 days using a 35-year dataset, and Sparks et al. (2000) 8 May using a 58-year dataset with the earliest −20 days and the latest +16 days. In western Poland, mean first flowering date over 20 years was 6 May (Sparks, Górska-Zajączkowska, Wójtowicz, & Tryjanowski, 2011). The spring flowering of buds in horse-chestnut is primarily controlled by February and March temperatures in Britain, and March to May temperatures in Poland (Menzel et al., 2008; Tryjanowski, Panek, & Sparks, 2006) but it is also said to have a photoperiod requirement (Basler & Körner, 2012) that develops just before leaf flushing (Laube et al., 2014). Zohner and Renner (2015) concluded that the delay in budburst in horse-chestnut under short days is simply a consequence of slower growth as a result of lower light availability rather than a photoperiod requirement itself. There appears to be no elevational change in photoperiod requirement (Basler & Körner, 2012).

Flowering in Britain usually lasts between late April and the middle of May (Tryjanowski et al., 2006). Jeffree (1960) identified mean start of flowering as 9 May ±5 days using a 35-year dataset, and Sparks et al. (2000) 8 May using a 58-year dataset with the earliest −20 days and the latest +16 days. In western Poland, mean first flowering date over 20 years was 6 May (Sparks, Górska-Zajączkowska, Wójtowicz, & Tryjanowski, 2011). The spring flowering of buds in horse-chestnut is primarily controlled by February and March temperatures in Britain, and March to May temperatures in Poland (Menzel et al., 2008; Tryjanowski, Panek, & Sparks, 2006) but it is also said to have a photoperiod requirement (Basler & Körner, 2012) that develops just before leaf flushing (Laube et al., 2014). Zohner and Renner (2015) concluded that the delay in budburst in horse-chestnut under short days is simply a consequence of slower growth as a result of lower light availability rather than a photoperiod requirement itself. There appears to be no elevational change in photoperiod requirement (Basler & Körner, 2012).

Flowering in Britain usually lasts between late April and the middle of May (Tryjanowski et al., 2006). Jeffree (1960) identified mean start of flowering as 9 May ±5 days using a 35-year dataset, and Sparks et al. (2000) 8 May using a 58-year dataset with the earliest −20 days and the latest +16 days. In western Poland, mean first flowering date over 20 years was 6 May (Sparks, Górska-Zajączkowska, Wójtowicz, & Tryjanowski, 2011).
and has been noticed sporadically in Slovenia (Menzel et al., 2008). In Bulgaria, a second flowering has traditionally been seen as a prediction of a severe winter (Nedelcheva & Dogan, 2011). Second flowering is probably a response to a hot, dry summer but is suggested to also be in response to damage caused by the leaf miner *Cameraria ohridella* and the fungus *Guignardia aesculi* (Menzel et al., 2008).

Saponins and flavonoid content reach their highest levels in seeds in August, 13–16 weeks after the beginning of flowering (Kędzierski et al., 2016). Seeds fall from mid-September (Farrant & Walters, 1998; Sparks et al., 2011), especially during autumn gales. In western Romania, horse-chestnut keeps its leaves for 130–175 days (Ianovici et al., 2017). Leaf colouring usually begins at the end of September (Hutchings et al., 2012; Sparks et al., 2011) but a warm May (in Germany) and June (in Slovenia) and a dry September leads to earlier leaf colouring. Conversely, a warm September delays colouring (Estrella & Menzel, 2006; Menzel et al., 2008). Leaves begin to fall in the first half of October, and leaf fall generally lasts 28 days so trees are bare of leaves by the beginning of November (Hutchings et al., 2012; Sparks et al., 2011).

7.1 Climate change

Modelling based on the natural range of horse-chestnut suggests that the distribution and abundance of horse-chestnut should not change significantly in the Balkan Peninsula under current climate change scenarios (Walas et al., 2018). However, horse-chestnut is sensitive to spring warming, and this is leading to rapid changes in spring phenology (Menzel, Estrella, & Testka, 2005; Tryjanowski et al., 2001; Walther et al., 2002). Some of this is due to local changes; for example, bud burst of horse-chestnut has become earlier in central Geneva since 1808 at the rate of 0.23 days per year, attributed to the heat island effect of the growing city (Defila & Clot, 2001). Nevertheless, climate change does appear to be having an effect. Chen et al. (2018) looked at five deciduous European trees, including horse-chestnut, across Europe and found that at low altitude (<10 m), leaf opening advanced between 1951 and 2013 by c. 2.4 days per decade (estimated from a figure). Conversely, at high altitude (800–1,000 m) before 1980 spring became later (+2.7 ± 0.6 days per decade, SD), and then advanced again c. 2.7 days per decade (estimated from a figure). But the rate of change appears to be slowing. Fu et al. (2015) looked at the number of days’ advance of leaf unfolding per °C of warming across Europe and found that horse-chestnut advancement had changed from 4.2 ± 1.5 (SD) days/°C in 1980–1994 to 2.1 ± 1.5 days/°C in 1999–2013, a reduction of 2.1 days/°C, the most of the seven species tested. This was attributed at least in part to the reduced chilling the trees are getting due to shorter and milder winters, despite chilling requirements becoming shorter. The winter chilling requirement of horse-chestnut has declined across central Europe from c. 68 days in 1980–1994 to c. 62 days in 1990–2013 (taken from a figure); chilling was calculated as chilling days when daily temperature was between 0°C and 5°C from 1 November to the average date of leaf unfolding (Fu et al., 2015).

In Germany, a 1°C increase in temperature resulted in advances of horse-chestnut flowering date by a mean of 2.6 days, particularly noticeable in areas that normally flowered early anyway (Menzel et al., 2005), and in Poland, flowering has been getting earlier at the comparatively small amount of 0.07 days per year (Jabłońska, Kwiatkowska-Falińska, Czernecki, & Walawender, 2015). Interestingly, there has been no apparent advancement in the start of fruit ripening despite leaf colouring beginning earlier (Menzel, Estrella, & Fabian, 2001).

The damage to leaves caused by the horse-chestnut leaf miner *Cameraria ohridella* has reduced the length of the growing season of horse-chestnut in Slovenia by 12 days/decade since 2000 (Menzel et al., 2008) and this is undoubtedly also occurring elsewhere in Europe. This shortening is tending to counteract the effects of climate change lengthening the growing season. Similarly, Jochner et al. (2015) stated that increased ozone pollution in cities is delaying leaf flushing and flower opening of horse-chestnut (although NOx are not) but data are not given.

8 FLORAL AND SEED CHARACTERS

8.1 Floral biology

The large panicle has male flowers at the top and hermaphrodite flowers below. In Polish samples, 73% of flowers were male and 27% of flowers hermaphrodite (Weryszko-Chmielewska & Chwil, 2017). However, some flowers at the base of the panicle can be functionally female (Čalić-Dragosavac, Zdravković-Korać, Miljković, & Radojević, 2009; Maurizio & Grafi, 1969). In Serbia, Ocokoljić, Vilotić, and Šijačić-Nikolić (2013) found 50% male, 28% hermaphrodite and 22% female flowers.

Aesculus hippocastanum is andromonoecious, amphi-mictic and normally cross-pollinated (Fitter & Peat, 1994). Large bees such as *Bombus* spp. (Hymenoptera, Apidae) tend to work their way upwards on a panicle from female, to hermaphrodite, to male flowers, helping to reduce self-pollination (Kevan, 1990). Hermaphrodite flowers are protogynous, but the whole inflorescence is protandrous (Fitter & Peat, 1994).

Horse-chestnut is primarily pollinated by insects and is often regarded as an important bee plant as the flowers provide abundant nectar and pollen for insects (Maurizio & Grafi, 1969) and glandular trichomes on the sepal and ovary produce olfactory attractants (Chwil, Weryszko-Chmielewska, Sulborska, & Michańska, 2013). Synge (1947) lists horse-chestnut as an important source of pollen early in the year, before *Tilia* spp. flower. Pollinators are honeybees *Apis mellifera* and bumblebees (Free, 1963; Maurizio & Grafi, 1969; Percival, 1955; Weberling, 1989), but flowers are also visited by hoverflies (Kugler, 1970), solitary bees such as *Osmia* spp. (Raw, 1974) and some mining bees in the genus *Andrena* (Hymenoptera, Apidae) (Chambers, 1968).

Nectar is found in both hermaphrodite and male flowers and is released as the buds open. A flower secretes a mean of 2.64 ± 0.94 mg (SD) of nectar in Poland (Weryszko-Chmielewska...
& Chwil, 2017) or c. 1.2 μl in Tilia × europaea and c. 1.7 μl in T. cordata, estimated from a figure (Somme et al., 2016). The nectar contains a comparatively low amount of sugar, c. 25%–32%, similar to Tilia tomentosa and A. carnea, but low compared to >60% in Robinia pseudoacacia and Tilia × europaea. Sucrose makes up 90% of the sugars, which is highly attractive to bees (Percival, 1961; Somme et al., 2016; Weryszko-Chmielewska & Chwil, 2017).

An inflorescence produces a total of 1 mg of pollen at the rate of 0.5 mg/day (Percival, 1955), high compared to the other tree species tested (e.g., totals of 0.3 mg in Ilex aquifolium and 0.8 mg in Crataegus monogyna). Stamens are normally bent downwards but become erect when shedding pollen, presumably as a mechanism for aiding pollen removal by insects. Percival (1955) classified horse-chestnut as a "chiefly morning" flowerer, presenting pollen for honeybees from 5 a.m. to 6 p.m. with the peak period at 5 a.m. when 20% of the day's pollen was presented; 63% of its total pollen is presented by midday. Anthers in a flower dehisce over one to several days, similar to other insect-pollinated trees such as Prunus spp. and Crataegus monogyna.

Horse-chestnut pollen has 39.5 ± 7.0 (SD) μg/mg of polypeptide, 331.7 ± 27.1 μg/mg amino acid content and 4.93–5.07 μg/mg sterol content, similar to the eight other hardwood trees commonly grown in parks in Belgium (Somme et al., 2016). The red connective protrusions at each end of the anthers secrete droplets which contain lipids and thus may also act as food bodies (Weryszko-Chmielewska & Chwil, 2017).

Bee deaths have been reported when fed horse-chestnut pollen and nectar (Maurizio, 1945), which may be due to the high saponin content (Section 6.6). The cause may also possibly be due to the presence of manocene or nicotine (Somme et al., 2016) although Detzel and Wink (1993) have found honeybees to tolerate low concentrations of alkaloids including nicotine. Bees have been seen to prefer flowers with lower saponin content (Maurizio, 1945; Schulz-Langner, 1967).

Pollinators are attracted to flowers by yellow floral guide spots on the petals. Once the flower is pollinated, these turn to red and nectar (Lunau, 1996; Willmer, 2011) and scent productions are greatly reduced or stopped (Lex, 1954). The red spots are unattractive to insects (Kugler, 1936) and are presumed to be a mechanism for not wasting the bee's efforts on flowers that are already pollinated. It is suggested that this colour change occurs, rather than petals falling once pollinated, to maintain the large visual signal of a tree to attract pollinators across large distances in mountainous habitats with dispersed populations (Thomas, 2014). Both ends of the anthers have red appendages, and the upper part of the style and the stigma are similarly red-coloured. These markings may also act of pollinator guides (Weryszko-Chmielewska et al., 2012).

Pollen of horse-chestnut is round-to-oval and very distinctive with coarse spines (Pozhidaev, 1995). Size ranges from 14 to 30 μm diameter, varying with bud size and position in the inflorescence (Čalić, Zdravković-Korać, Pemac, & Radiojević, 2003-2004; Čalić-Dragosavac et al., 2009; Radiojević, 1989). In material collected from 125-year-old trees in Serbia, Čalić and Radiojević (2017) estimated there to be between 3,600 and 5,000 pollen grains per anther, depending on genotype, with viability determined by staining with fluorescein diacetate to be 56%–68%, and by germination on basic medium to be 50%–66%. By contrast, Kugler (1970) calculated 26,000 pollen grains per anther, 181,000 per flower and thus 42 million pollen grains from a single inflorescence.

Pollination is primarily by insects, but due to the large number of pollen grains produced, wind pollination is considered a viable supplement. Certainly air-borne pollen has been detected in many European countries, averaging 8–69 pollen grains/m³ of air during the flowering season (Biçakci, Benlioglu, & Erdogan, 1999; Popp et al., 1992; Weryszko-Chmielewska et al., 2012). Studies across Europe have shown that horse-chestnut pollen in urban areas accounts for 0.13%–1.54% of total air-borne pollen (Melgar et al., 2012; Peternel, Čulig, Mitić, Vukušić, & Šostar, 2003; Rizzi-Longo, Pizzulin-Sauli, Stravisi, & Ganis, 2010; Stefanic, Rasic, Medric, & Colacovic, 2007), high enough densities to cause an allergic reaction in children in Vienna (Popp et al., 1992) and presumably high enough to supplement insect pollination.

8.2 | Hybrids

Aesculus hippocastanum is known to hybridise with the four North American species of Section Pavia when they are grown together—A. pavia L., A. glabra Willd., A. flava Sol. (=A. octandra Marsh.) and A. sylvatica L. (Hardin, 1957). The only hybrid commonly found in Europe is the red horse-chestnut, A. carnea Willd. (=A. rubicunda Loddd., A. rubicunda Loisel., A. intermediæ Andre.), a hybrid of A. hippocastanum and A. pavia (note that as a fully fertile hybrid, the species name is not preceded by "x" by convention). This hybrid is fertile and breeds true (linked to being a tetraploid). It is often grafted onto A. hippocastanum for vigour. It was first grown in Britain around 1818 (Leathart, 1991) and was recorded in the wild by 1955 (Preston et al., 2002) and is now occasionally self-sown in Surrey, West Kent and North Hampshire (Stace, 2010). A cultivar, A. carnea ‘Briotii’, produced in France in 1958, has brighter red flowers and glossier, more attractive leaves than the original hybrid, and is widely planted (Leathart, 1991). Irzykowska, Werner, Bocianski, Karolewski, and Frużyńska-Jóźwiak (2013) found, perhaps unsurprisingly, that genetic diversity was higher in A. hippocastanum (mean genetic similarity of 0.55) than in A. carnea (0.98). The majority of the genetic variance (73.0%) was contributed by the differentiation between A. hippocastanum and A. carnea, whereas 27.0% was partitioned within species. Hardin (1960) also lists a triploid backcross between A. carnea and A. hippocastanum named A. × plantierensis.

8.3 | Seed production and dispersal

There are typically 2–5(8) fruits per panicle, each containing one (rarely two or three) seeds (Thalmann et al., 2003). But the number of panicles is very variable, giving a seed production of from 2–3 to 25 kg of fresh seeds per tree (Bellini & Nini, 2005), which equates to approximately 125 to 1,600 seeds per tree. Horse-chestnut has...
shown masting, with large seed crops produced every 2 years in natural populations in Greece (Tsiroukis, 2008). This was seen to be synchronised throughout its distribution range in Greece.

Mean fruit mass has been measured at 42.14 g in natural populations in Greece (Tsiroukis, 2008). Seeds are large, each typically 13–20 g fresh mass (Daws et al., 2004; Bonner & Karrfalt, 2008), although are largest (15.3–22.6 g) in street trees in Serbia (Ocokolić & Stojanović, 2009; Ocokolić et al., 2013), but smaller (mean 9.9–14.5 g) in natural populations in Greece (Daws et al., 2004; Tsiroukis, 2008) and smallest (1.2 g) at the northern end of its planted range in Scotland (Daws et al., 2004).

Seeds are primarily dispersed by gravity (barochory), with seeds falling from the fruits more or less under the crown of the mother tree. Little is known about distances moved by horse-chestnut but seeds of the closely related A. turbinata were found to disperse a mean of 12.2–44.7 m from the parent trees during a 3-year study in Japan, with a maximum distance of 41.5–114.5 m (Hoshizaki, Suzuki, & Nakashizuka, 1999). It is likely that dispersal distances are similar in A. hippocastanum. Aesculus turbinata seeds are known to be dispersed by rodents (Hoshizaki et al., 1999) and this is likely to happen, to some extent at least, in horse-chestnut. Seedlings have been seen far away from mature trees in Greece with rodent movement the most likely cause (M. Dering and G. Iszkuło, pers. comm., September 7, 2018). Ridley (1930) records that even the removal of one cotyledon by rats does not prevent at least initial stages to germinate such as radical elongation. In Britain, other vectors undoubtedly include grey squirrels (Sciurus carolinensis Gmelin), corvids (Briggs, 1989) and children collecting and ultimately discarding conkers. There is also a suggestion that seeds of horse-chestnut are secondarily dispersed by water, particularly during snow-melt, primarily based on the consistent occurrence of horse-chestnut along mountain streams and rivulets in the native Greek populations (Briggs, 1989; Tsiroukis, 2008). However, this is probably a result of dispersal by gravity and the needs of germination and early growth rather than a facet of secondary dispersal.

8.4 Viability of seeds: germination

Seeds grown in Britain and sown onto agar immediately after falling will germinate at between 26 and 36°C (in the dark at constant temperature) within 1 month of sowing reaching up to 80%–90% germination (Pritchard, Steadman, Nash, & Jones, 1999; Tompsett & Pritchard, 1993), aided by the presence of heat-shock proteins in the embryo (Azarkovich & Gumilevskaya, 2012). But since British autumn temperatures are lower than this, germination in the open is unlikely (Daws et al., 2004). However, Greek seeds can germinate in the field at 15–19°C, and thus, germination may occur in the autumn coinciding with autumn rain. This may give seedlings an advantage in allowing establishment and growth before summer drought the following year (Daws et al., 2004). Variation in the temperature needed for germination appears to be linked to seed (and particularly embryo) development. Farrant and Walters (1998) noted that in seeds collected in Colorado, USA, the dry mass of the embryo increased from 0.5 to 4.0 mg during development. Other work by Pammenter and Berjak (1999) showed that respiration in developing horse-chestnut seeds remained high (3.0–5.0 nmol O₂ g dw⁻¹ s⁻¹) until the seed started drying indicating that they were still developing. Seeds from further north certainly have a lower mass (Section 8.3) and are likely less developed when shed than seeds grown in warmer conditions. This is supported by c. 70% of Scottish seeds being found to be empty or underdeveloped and non-viable (Daws et al., 2004). Indeed, British seed has been seen to increase in dry mass right up to seed fall, and also maintain high seed moisture content which was linked to a decrease in desiccation tolerance and germinability (Tompsett & Pritchard, 1993). Fresh seed moisture content at time of seed fall has been measured at 59.7±0.2% (SE, n = 150) in Greece and 69.0±1.9% in Scotland, with a solute potential −3.0±0.2 MPa in Greece and −2.1±0.1 MPa in Scotland (Daws et al., 2004).

Proteins in the cytosol of the seed cells are mainly water-soluble albumins which, being hydrophilic, may help prevent the seed dehydrating over winter, and may also confer protection against cold stress (Azarkovich & Bolyakina, 2016). Seeds can be stored when hydrated at 16°C, with more than one-third of seeds remaining germinable after 3 years (Pritchard, Tompsett, & Manger, 1996). Nevertheless, seeds are sensitive to desiccation and short-lived when dried (recalcitrant); as they dry to 32%–40% moisture, they develop dormancy and lose viability upon further drying (Tompsett & Pritchard, 1998). As with Quercus spp. and Castanea sativa, horse-chestnut viability typically declines to 50% germination over 10–24 weeks (Gosling, 2007). Higher temperatures during development and lower moisture content at seed fall result in greater desiccation tolerance and shallower dormancy (Farrant & Walters, 1998; Obroucheva & Lityagina, 2007; Pritchard et al., 1999; Tompsett & Pritchard, 1993, 1998) and helps account for variation in dormancy geographically and between years. Median water potential resulting in seed death was −5.1±0.65 MPa (SE, n = 150) for Scottish seeds and −16.2±0.83 MPa for Greek seeds (Daws et al., 2004). The physiological and morphological changes that occur in seeds as they develop, pass through dormancy and germinate are described further by Musatenko, Generalova, Martyn, Vedenicheva, and Vasyuk (2003), Obroucheva, Lityagina, Novikova, and Sin'kevich (2012); Obroucheva, Sinkevich, and Lityagina (2016); and Obroucheva, Lityagina, and Novikova (2017).

The embryo-based physiological dormancy caused by drying can be broken by stratification at −3 to 6°C (4°C optimum) for 8–21 weeks, longer for more northern seed (Azarkovich & Gumilevskaya, 2012; Obroucheva & Lityagina, 2007; Pritchard et al., 1999; Steadman & Pritchard, 2004; Takos et al., 2008; Tompsett & Pritchard, 1993). Stratification increases germination at temperatures from 6 to 36°C (Pritchard et al., 1999; Steadman & Pritchard, 2004). Germination at 2–6°C in the dark at constant temperature is possible but takes up to 4 months, and total germination is not increased by stratification (Pritchard et al., 1999). However, the minimum temperature at which germination will occur was found to be reduced at a mean rate of 0.18°C/day during...
stratification, with the reduction being fastest during stratification at 2°C and slowest at 16°C (Steadman & Pritchard, 2004). Dormancy can also be overcome by partial drying from 50% to 32%-40% moisture content (Tompsett & Pritchard, 1998). The effect of drying appeared to be interchangeable with stratification, and it is likely that both aid the seed maturation process since the effect of partial drying was only seen in the relatively immature shed seeds of Scottish and English origin. Without stratification, seeds can also be induced to germinate by soaking in water from 48 hr followed by cutting away one-third of the seed at the hilum without removing the seed coat (Bellini & Nin, 2005).

8.5 | Seedling morphology

Germination is hypogeal and usually is complete after 3–4 weeks (Bellini & Nin, 2005). Seedling morphology is shown in Figure 3.

9 | HERBIVORY AND DISEASE

9.1 | Animal feeders or parasites

Deer and wild boar (Sus scrofa L.) are known to eat horse-chestnut seeds (Bean, 1976; Bratton, 1974), but there are few other records of browsing or grazing. Insects that have been recorded on horse-chestnut are given in Table 2. Pollen is used as food by hoverflies (Diptera, Syrphidae) (Kugler, 1970), and it is known that Apis mellifera L. (Hymenoptera, Apidae) harvests resins from horse-chestnuts, but whether this is from the “sticky buds” or elsewhere is not stated (Wilson, 2014). Rotheray et al. (2001) visited 300 Scottish woodlands, recording 31 species of saproxylic Diptera on horse-chestnut, ranking the tree 11th out of the 22 tree species investigated, similar to Ulmus glabra (35) and Populus tremula (36), compared to 74 species on Betula pubescens. The Diptera on horse-chestnut included the red-listed species Systenus bipartitus (Loew) (Diptera, Dolichopodidae) found only on horse-chestnut and Phaonia exoleta (Meigen) (Diptera, Muscidae) also found on Acer pseudoplatanus and Fagus sylvatica. The larvae of a number of rare saproxylic hoverflies (Diptera, Syrphidae) were found in Cambridgeshire on horse-chestnut in rot holes, including Myathropa florea (L.), Callicera spinolae Rondani and Mallota cimbiciformis (Fallén), and in sap runs, including Brachyopa insensilis (Collin), B. scutellaris Robineau-Desvoidy and B. bicolor (Fallén) by Damant (2005). He suggested that these had not been found before since horse-chestnut has been neglected by entomologists because it is an introduced tree.

Anoplophora chinensis (Forster) (Coleoptera, Cerambycidae) will oviposit on horse-chestnut trunks but adult beetles do not feed on its twigs (Peverieri & Roversi, 2010); by contrast, horse-chestnut is very susceptible to damage by larvae and adults of A. glabripennis (Motschulsky)

FIGURE 3 Seedlings of Aesculus hippocastanum at (a) 1 week, (b) 2 weeks, (c) 4 weeks and (d) 8 weeks after germination. Drawings by Omar Alhamd
TABLE 2 Invertebrates recorded from *Aesculus hippocastanum* in Britain. Nomenclature follows that of the Database of Insects and their Food Plants (DBIF, 2018)

<table>
<thead>
<tr>
<th>Species/classification</th>
<th>Ecological notes</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acaridae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tegonotus carinatus</td>
<td>Larvae and adults; leaves; Aesculus only</td>
<td>1</td>
</tr>
<tr>
<td>Vasates hippocastani</td>
<td>Galling on leaves; Aesculus only</td>
<td>1</td>
</tr>
<tr>
<td>Tetranychidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eotetranychus pruni</td>
<td>Leaves; variety of deciduous trees</td>
<td>1</td>
</tr>
<tr>
<td>E. tiliarum</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Hemiptera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periphyllus testudinaceus</td>
<td>Also on Acer</td>
<td>1</td>
</tr>
<tr>
<td>Cicadellidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edwardsiana avellanae</td>
<td>Leaves; Also on Ulmus, Acer, Corylus</td>
<td>1</td>
</tr>
<tr>
<td>E. hippocastani</td>
<td>Variety of deciduous trees</td>
<td>1</td>
</tr>
<tr>
<td>E. lethierryi</td>
<td>Leaves; variety of deciduous trees</td>
<td>1</td>
</tr>
<tr>
<td>Fagocyba cruenta</td>
<td>Leaves; wide variety of deciduous trees</td>
<td>1</td>
</tr>
<tr>
<td>Alebra wahlbergi</td>
<td>Leaves; wide variety of deciduous trees</td>
<td>1</td>
</tr>
<tr>
<td>Ossiannilssonola callosa</td>
<td>Leaves; also on Alnus, Crataegus, Fagus, Tilia and Acer</td>
<td>1</td>
</tr>
<tr>
<td>Coccidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eulecanium tiliae</td>
<td>Stems; wide variety of deciduous trees</td>
<td>1</td>
</tr>
<tr>
<td>Parthenolecanium corni</td>
<td>Very wide range of trees</td>
<td>1</td>
</tr>
<tr>
<td>P. rufulum</td>
<td>Also on Quercus, Castanea, Carpinus and shrubs</td>
<td>1</td>
</tr>
<tr>
<td>Pulvinaria betulae</td>
<td>Variety of deciduous woody plants</td>
<td>1</td>
</tr>
<tr>
<td>P. regalis</td>
<td>Leaves, branches, trunk; variety of trees</td>
<td>1</td>
</tr>
<tr>
<td>Diaspididae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidosaphes ulmi</td>
<td>Very wide range of trees and shrubs</td>
<td>1</td>
</tr>
<tr>
<td>Pseudococcidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenacoccus aceris</td>
<td>Wide range of deciduous trees</td>
<td>1</td>
</tr>
<tr>
<td>Lepidoptera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeuzera pyrina</td>
<td>Stem miner; wide range of trees and shrubs</td>
<td>1</td>
</tr>
<tr>
<td>Geometridae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alsophila aescularia</td>
<td>Leaves; variety of deciduous trees and shrubs</td>
<td>1</td>
</tr>
<tr>
<td>Campaea margaritata</td>
<td>Larvae; variety of trees and shrubs</td>
<td>1</td>
</tr>
<tr>
<td>Ennomos fusantararia</td>
<td>Larvae; Fraxinus, Ligustrum</td>
<td>1</td>
</tr>
<tr>
<td>Lycia hirtaria</td>
<td>Leaves; wide variety of trees and shrubs</td>
<td>1</td>
</tr>
<tr>
<td>Ourapteryx sambucaria</td>
<td>Larvae; variety of deciduous trees and shrubs</td>
<td>1</td>
</tr>
<tr>
<td>Gracillariidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameraria ohridella</td>
<td>Horse-chestnut leaf miner</td>
<td>1</td>
</tr>
<tr>
<td>Lymantriidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymantria monacha</td>
<td>Leaves; wide range of trees</td>
<td>1</td>
</tr>
<tr>
<td>Noctuidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithophane hepatica</td>
<td>Leaves; variety of deciduous trees and shrubs</td>
<td>1</td>
</tr>
<tr>
<td>Phalera bucephala</td>
<td>Leaves; wide variety of trees</td>
<td>1</td>
</tr>
</tbody>
</table>

(Continues)
TABLE 2 (Continued)

<table>
<thead>
<tr>
<th>Species/classification</th>
<th>Ecological notes</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cacoecimorpha pronubana (Hubner)</td>
<td>Larvae; wide range of herbaceous plants and trees</td>
<td>1</td>
</tr>
<tr>
<td>Yponomeutidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argyresthia glaucinella Zeller</td>
<td>Bark; Betula, Quercus</td>
<td>1</td>
</tr>
<tr>
<td>Coleoptera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attelabidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attelabus nitens (Scopoli)</td>
<td>Leaf rolling; variety of trees</td>
<td>1</td>
</tr>
<tr>
<td>Curculionidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesites tardii (Curtis)</td>
<td>Dead bark and wood; variety of trees and shrubs</td>
<td>1</td>
</tr>
<tr>
<td>Rhyncolus lignarius (Marsham)</td>
<td>Wood; also on other woody plants</td>
<td>1</td>
</tr>
<tr>
<td>Eucnemidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyllis olexai (Palm)</td>
<td>Dead wood; also on Populus, Fagus and Abies</td>
<td>1</td>
</tr>
<tr>
<td>Lucanidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucanus cervus (L.)</td>
<td>Wood, roots; variety of deciduous trees</td>
<td>1</td>
</tr>
<tr>
<td>Melandryidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdera quadrifasciata (Curtis)</td>
<td>Dead wood; Fagus, Quercus, Carpinus</td>
<td></td>
</tr>
<tr>
<td>Diptera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aulacigastridae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aulacogaster leucopeza (Meigen)</td>
<td>Larvae in sap exudate</td>
<td>2</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dasyhelea flavifrons (Guérin)</td>
<td>Larvae in sap exudate</td>
<td>2</td>
</tr>
<tr>
<td>Culicidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anopheles plumbeus Stephens</td>
<td>In wet tree hollow</td>
<td>2</td>
</tr>
<tr>
<td>Finlaya geniculata (Olivier)</td>
<td>In wet tree hollow</td>
<td>2</td>
</tr>
<tr>
<td>Orthopodomyia pulchripalpis (Rondani)</td>
<td>In wet tree hollow</td>
<td>2</td>
</tr>
<tr>
<td>Dolichopodidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systenus pallipes (von Roser)</td>
<td>In wood pulp</td>
<td>2</td>
</tr>
<tr>
<td>S. scholtzi Loew</td>
<td>In wood pulp</td>
<td>2</td>
</tr>
<tr>
<td>Limoniidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhipidia ctenophora Loew</td>
<td>In wood pulp</td>
<td>2</td>
</tr>
<tr>
<td>Muscidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phaonia cincta Zett.</td>
<td>In wood pulp</td>
<td>2</td>
</tr>
<tr>
<td>P. exolet A (Meigen)</td>
<td>In wood pulp</td>
<td>2</td>
</tr>
<tr>
<td>Mycetobiidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mycetobia pallipes Meigen</td>
<td>Larvae in sap exudate</td>
<td>2</td>
</tr>
</tbody>
</table>

1. DBIF (2018); 2. Keilin (1927).

9.1.1 | Horse-chestnut leaf miner

The horse-chestnut leaf miner Cameraria ohridella Deschka & Dimić (Lepidoptera, Gracillariidae) is a leaf-mining micro-moth that was first observed in the late 1970s near Lake Ohrid, Macedonia, and described in 1985 by Deschka and Dimić (1986). It has since spread rapidly through central and western Europe and into the Ukraine, Belarus and western Russia (Avtzis & Avtzis, 2002; Gilbert et al., 2005; Gussev & Vulchev, 2015; Pirc, Dreo, & Jurc, 2018; Thalmann et al., 2003; Tomiczek & Krehan, 1998; Weryszko-Chmielewska & Haratyw, 2011, 2012) at a rate of approximately 50–100 km per year (Šefrová & Laštůvka, 2001) or c. 3 km per generation (Gilbert, Grégoire, Freise, & Heitland, 2004). It was first seen in Britain in Wimbledon in 2002, and by the end of 2010, it was in most parts of England and Wales. It was originally thought to be of exotic origin (Grabenweger et al., 2005) but has been shown to be native on
horse-chestnut in the Balkans (Kenis et al., 2006; Kenis et al., 2005; Lees et al., 2011; Valade et al., 2009) and that just a few lineages with limited genetic diversity moved to urban areas in the second half of the 20th century (Valade et al., 2009). Grabenweger et al. (2005) found *C. ohirola* to be abundant in natural stands of horse-chestnut in Greece and Bulgaria, confirmed by Walas et al. (2018) for some populations in Greece. *Cameraria ohirola* shows a preference for *A. hippocastanum* and the closely related *A. turbinata*; larval mortality is high on *A. carnea* (Freise, Heitland, & Sturm, 2003), and other *Aesculus* species are rarely predated (D’Costa, Koricheva, Straw, & Simmonds, 2013; D’Costa, Simmonds, Straw, Castagnevrole, & Koricheva, 2014; Ferracini, Curir, Dolci, Lanzotti, & Alma, 2010; Freise, Heitland, & Sturm, 2004; Straw & Tilbury, 2006) undoubtably due to the high saponin levels in the leaves of these other species (Ferracini et al., 2010). The moths will occasionally mine *Acer pseudoplatanus* and *A. platanoides* when horse-chestnut is unavailable or as opportunistic infestations near heavily infested horse-chestnuts (Krehan, 1995; Pére, Augustin, Turlings, & Kenis, 2010; Straw & Tilbury, 2006).

Female moths lay their eggs on the adaxial leaf surface (Weryszko-Chmielewska & Haratyk, 2012), and the larvae burrow in and feed on the palisade mesophyll leaving dead, dried lines of epidermis on both sides of the leaf (Weryszko-Chmielewska & Haratyk, 2011). Most often three, but sometimes up to five, generations are produced per year (Šefrová & Laštůvka, 2001) with the last generation overwintering as pupae in the leaf litter, probably along with a few from previous generations, to produce the first generation the following year (Hněvová, Kodrik, & Weyda, 2011; Samek, 2003; von Skuhrová, 1998). The first generation feeds mostly in the lower part of the crown, while subsequent generations feed mainly in the upper part of the crown (Krehan, 1995). Thus, Nardini et al. (2004) observed in north-east Italy that in early May 2%–3% leaf area was lost at 2 and 6 m above ground; by the end of June, leaf area loss was 30% at 2 m, 18% at 6 m, 10% at 10 m and 8% at 14 m; and by the end of August, it was 85% at 2 m, 75% at 6 m, 65% at 10 m, 55% at 14 m. Spatial analysis in the Czech Republic showed that damage between sites was not related to the infestation of neighbouring areas, indicating that the distribution of *C. ohirola* is random (Kopačka & Zemek, 2017). However, Gilbert, Svatko, Lehmann, and Bacher (2003) found a positive correlation in Bern, Switzerland, between infestation level on a tree and the number of other horse-chestnut trees within 800 m distance, and in Brussels the proportion of green leaves within 800 m distance, and in Brussels the proportion of green leaves of horse-chestnut trees in the Balkans (Kenis et al., 2006; Kenis et al., 2005; Lees et al., 2011; Valade et al., 2009) and that just a few lineages with limited genetic diversity moved to urban areas in the second half of the 20th century (Valade et al., 2009). Grabenweger et al. (2005) found *C. ohirola* to be abundant in natural stands of horse-chestnut in Greece and Bulgaria, confirmed by Walas et al. (2018) for some populations in Greece. *Cameraria ohirola* shows a preference for *A. hippocastanum* and the closely related *A. turbinata*; larval mortality is high on *A. carnea* (Freise, Heitland, & Sturm, 2003), and other *Aesculus* species are rarely predated (D’Costa, Koricheva, Straw, & Simmonds, 2013; D’Costa, Simmonds, Straw, Castagnevrole, & Koricheva, 2014; Ferracini, Curir, Dolci, Lanzotti, & Alma, 2010; Freise, Heitland, & Sturm, 2004; Straw & Tilbury, 2006) undoubtably due to the high saponin levels in the leaves of these other species (Ferracini et al., 2010). The moths will occasionally mine *Acer pseudoplatanus* and *A. platanoides* when horse-chestnut is unavailable or as opportunistic infestations near heavily infested horse-chestnuts (Krehan, 1995; Pére, Augustin, Turlings, & Kenis, 2010; Straw & Tilbury, 2006).

Female moths lay their eggs on the adaxial leaf surface (Weryszko-Chmielewska & Haratyk, 2012), and the larvae burrow in and feed on the palisade mesophyll leaving dead, dried lines of epidermis on both sides of the leaf (Weryszko-Chmielewska & Haratyk, 2011). Most often three, but sometimes up to five, generations are produced per year (Šefrová & Laštůvka, 2001) with the last generation overwintering as pupae in the leaf litter, probably along with a few from previous generations, to produce the first generation the following year (Hněvová, Kodrik, & Weyda, 2011; Samek, 2003; von Skuhrová, 1998). The first generation feeds mostly in the lower part of the crown, while subsequent generations feed mainly in the upper part of the crown (Krehan, 1995). Thus, Nardini et al. (2004) observed in north-east Italy that in early May 2%–3% leaf area was lost at 2 and 6 m above ground; by the end of June, leaf area loss was 30% at 2 m, 18% at 6 m, 10% at 10 m and 8% at 14 m; and by the end of August, it was 85% at 2 m, 75% at 6 m, 65% at 10 m, 55% at 14 m. Spatial analysis in the Czech Republic showed that damage between sites was not related to the infestation of neighbouring areas, indicating that the distribution of *C. ohirola* is random (Kopačka & Zemek, 2017). However, Gilbert, Svatko, Lehmann, and Bacher (2003) found a positive correlation in Bern, Switzerland, between infestation level on a tree and the number of other horse-chestnut trees within 800 m distance, and in Brussels the proportion of green leaves within 100 m and the number of other horse-chestnut trees within 2,000 m.

In native Greek populations, infestation rates are apparently low with a mean of 0.08 mines per leaflet recorded by Lees et al. (2011) and <3 mines per leaflet, covering <5.3% of leaf area recorded by Walas et al. (2018) although the latter data were collected in June–July before maximum infestation. The average number of mines was negatively correlated with altitude, but there was no significant correlation between temperature, precipitation and the number of mines (Walas et al., 2018). At the highest sites investigated (1,239–1,463 m), mines were absent, and at lower altitudes (<1,000 m), leaves had similar numbers of mines to “artificial” sites where horse-chestnut has been introduced (Walas et al., 2018). This, together with herbarium specimens of branches with leaves having very few mines per leaf (Lees et al., 2011), suggests that native horse-chestnut populations have been secondarily infected by a more invasive mitochondrial DNA haplotype that has been observed in most artificial stands in Europe.

Populations of the leaf miner readily establish in planted populations of horse-chestnut (<2% of hatching larvae fail to establish a leaf mine; Gilbert et al., 2004) and leaf damage can rise dramatically in the first 3 years of infestation (Pocock & Evans, 2014), reaching 200 mines per leaf and removing up to 75% of total leaf area in southern England (Straw & Williams, 2013) and even causing complete defoliation (Thalmann et al., 2003) by shortening the life span of the leaves up to 30%, which fall from the tree beginning in July (von Skuhrový, 1998).

A number of studies have shown that there is no loss of assimilation before early June in Italy and late June in Britain (Nardini et al., 2004; Percival, Barrow, Noviss, Keary, & Pennington, 2011) during which loss of leaf area is low (6%–11% leaf area loss in late July in Britain), Raimondi et al. (2003) found that photosynthesis in the green parts of mined leaves was as high as in intact leaves so subsequent loss of assimilation was due to changes in leaf area only. Over the whole of the growing season, the loss in assimilation is usually no more than 30%–37% even in years of heavy infestation (Nardini et al., 2004; Percival et al., 2011; Straw & Williams, 2013). This is because leaf area loss in the early part of the season is mainly in the lower part of the crown where leaves are more shaded and less productive (Straw & Williams, 2013). Moreover, loss of leaf area progressively develops through the summer and is maximal when the photosynthetic efficiency of the leaves has decreased and they are contributing less to total seasonal assimilation (Nardini et al., 2004).

Loss of assimilation reduces the growth of a tree. However, in the short-term, infestation with the leaf miner leads to greater annual wood production that is probably a reaction to maintain hydraulic conductivity. Salleo et al. (2003) in north-east Italy measured mean ring widths of 1.35 mm in the 4 years before infestation, and of 2.20 mm in the 4 years after, resulting in 62% more wood production after attack. Wood grown in attacked trees had its water-conducting cross-sectional area increased to 32% compared to 25% in control trees sprayed with insecticide. This extra conductivity was due to a higher proportion of larger vessels 30.1–40.0 μm diameter compared to the controls (18 and 9%, respectively) and the widest vessels (>40 μm) which were only present in infested trees, forming c. 5% of the total or 40 vessels/mm². In both infested and control trees, water was taken up through the outer two rings, so the higher xylem conductivity would have helped compensate for defoliation in the lower part of the crown and overall shorter leaf life span by increasing water and nutrient supply to less damaged leaves higher in the crown.

One growing season after treating mature horse-chestnuts with insecticide to reduce leaf miner attack they had 33% higher root carbohydrate concentrations and 1,719% higher twig starch
content than untreated controls (Percival et al., 2011). In the long-term, however, infestation reduces tree vigour and growth (Bednarz & Scheffler, 2008; Percival et al., 2011; Straw & Williams, 2013). In Körnik, Poland, Jagielło et al. (2018) found that trees injected with insecticide (imidacloprid) were taller 10 years after treatment than untreated controls (15 vs. 13 m, estimated from figure) and had higher mean DBH (28 vs. 22 cm) and higher basal area increment (125 vs. 80 cm²). But there is no compelling evidence that damage by *C. ohridella* leads to long-term health problems or tree death (Straw & Bellett-Travers, 2004).

Flowering can be reduced by the leaf miner primarily by trees producing a smaller number of functionally female flowers (Weryszko-Chmielewska et al., 2012; Franiel, Woźniak, & Orlik, 2014), although there is no evidence that the number of seeds is reduced (Thalmann et al., 2003). However, the seeds from infested trees are 40%–50% smaller (Jagielło et al., 2017; Nardini et al., 2004; Takos et al., 2008; Thalmann et al., 2003), in Italy typically with a mass of 6 g compared to 10–12 g in trees with well-developed foliage (Salleo et al., 2003). This effect is still clear in partially defoliated trees; Thalmann et al. (2003) found that heavily infested trees in Munich (>75% leaf area lost) had smaller fruits (c. 6 g) and seeds (c.4.5 g) than did lightly infested trees (25%) with fruits of >9 g and seeds of >7 g.

Percival et al. (2011) found in South England that seed germination was 47.6% higher in seeds from insecticide-treated trees compared to leaf miner infested trees, presumably because the seeds were larger. However, in native populations in Greece, Takos et al. (2008) found the opposite that germination was significantly but marginally higher in seeds from infected trees (97.0%) compared with insecticide-treated trees (92.3%) and was 1 week quicker. This is likely due to seeds on infested trees having a longer post-ripening period after the trees are defoliated and so are more mature (Section 8.4) and ready to germinate upon falling.

Seedling survival in the first 2–3 years does not appear to be affected by the leaf miner (Raimondo, Trifilò, Salleo, & Nardini, 2005; Takos et al., 2008). Raimondo et al. (2005) noted that the leaf expansion of 3-year-old seedlings was complete before the leaves were mined, so growth of infested seedlings was similar to that of controls. However, Takos et al. (2008) saw that non-infested seedlings grew taller (c. 27 cm) over the first 2 years, compared to infested seedlings (c. 18 cm) and were larger (35.3 g total dry mass non-infested, 19.5 g infested). Raimondo et al. (2005) attributed slower growth in infested seedlings to lower leaf water conductance both in mined and in green areas of attacked leaves (control 160 mmol m⁻² s⁻¹, green parts of infected leaves 130 mmol m⁻² s⁻¹, mined areas 60 mmol m⁻² s⁻¹) and higher hydraulic resistance.

The larval stages can be controlled by spraying or injecting trees with chitin synthesis inhibitors, such as diflubenzuron or triflumuron (Dziègelewskwa & Kaup, 2008; Krehan, 1997; Nejmanová et al., 2006). Insecticides such as imidacloprid, abamectin, acetamiprid and clothianidin have also proved effective (Burkhart et al., 2015; Ferracini & Alma, 2008; Kobza, Juhaszová, Adamčíková, & Onrušková, 2011; Kosibowicz & Skrzecz, 2010) as has injection of seed extracts of the neem tree, *Azadirachta indica* A. Juss. (Pavela & Bárnet, 2005). Insecticide implants in trees, such as Acecap, have proved less useful (Krehan, 1997). Glue bands around the trunk to trap adult moths have proved effective if applied every year (Percival, 2016), but pheromone traps have not been found to reduce damage (Sukováta, Czokajlo, Kolk, Šlusarski, & Jabłoński, 2011).

Biocontrol is unlikely to be widely effective since natural rates of parasitism of the leaf miner larvae are typically <6% of a population (Freise et al., 2000; Pocock & Evans, 2014; von Skruhavý, 1998) but can be up to 20% (Stojanović & Marković, 2004; Volter & Kenis, 2006) especially in sun-exposed trees (Tarwacki, Bystrowski, & Celmer-Warda, 2012). In Italy, the larvae were predated by the ant *Crematogaster scutellaris* (Olivier) (*Hymenoptera, Formicidae*) (Radeghieri, 2004). However, the adult moths can detect infection of leaves by *Erysiphe flexuosa* and *Guignardia aesculi* (Section 9.3) under laboratory conditions, which results in lower egg laying (Johnne, Weissbecker, & Schütz, 2008) and may be useful for biocontrol in the field.

The most effective control measure for urban trees is likely to be removing fallen leaves from the ground where the pupae overwinter (Kukaña-Mlynarczyk & Hurej, 2007; Pavan, Barro, Bernardellini, Gambon, & Žandigiacomo, 2003). Adults will, however, disperse towards trees from areas where it is difficult to remove litter (Augustin et al., 2009; Kehrli & Bacher, 2003; Straw & Bellett-Travers, 2004) and local populations can rebuild (Baranik, Walczak, Tryjanowski, & Zduńak, 2004; Gilbert et al., 2005). Moving collected litter also carries the risk of introducing the miner to new areas, so it is unlikely to be a complete solution. The collected litter can be composted; experiments burying infected litter under 15 cm of uninfected foliage or 10 cm of soil both reduced the emergence of *C. ohridella* by 96% (Kehrli & Bacher, 2004). Composting litter with sewage sludge producing temperatures >50°C for 7 days should lead to eradication of the miner (*Łowiński & Dach, 2006*). Litter can be removed anytime before spring with the same effect (Kehrli & Bacher, 2003).

9.2 Plant parasites

The wood is readily decomposed and is noted for its ability to host saprophytic fungi, particularly *Scytalidium cuboidenum* (Sacc., & Ellis) Sigler & Kang (=*Arthographis cuboidea*) (Sacc., & Ellis) Sigler; Ascomycota, Incertae sedis and *Ophiostoma piceae* (*Münch*) *Syd.* (*Ascomycota, Xylariales*), *Ganoderma australis* (Fr.) Petrak; Ascomycota, *Xylariaceae* (=*G. resinaceum* (Fr.) Boud.; Ascomycota, *Xylariomatales*) (Robinson et al., 2011). A number of saprophytic fungi are known on horse-chestnut, including *Kretzschmaria deusta* (Hoffm.) P.M.D. Martin (=*Ustulina deusta* (Fr.) Petrak; Ascomycota, *Xylariaceae*), *Ganoderma australis* (Fr.) Pat. (=*G. adspersum* (Schulz.) Donk; Basidiomycota, *Polyporales*), *G. gibbosum* (Blume & T. Nees) Pat. and *G. resinae* (Boud.; Greig, 2012; Guglielmo, Bergemann, Gonthier, Nicolotti, & Garbelotto, 2007; Pearce, 1991). *Schizophyllum commune* Fr. (Basidiomycota, *Schizophyllaceae*) is saprophytic on horse-chestnut but can become parasitic causing white surface rot (Sniesskien et al., 2011). Increment cores taken from horse-chestnut resulted in extensive vertical discoloration 10 years later with a mean distance 39 cm, compared to *Tilia platyphyllos* 21 cm, *T. cordata* 16 cm and *Betula pendula* 155 cm
Horse-chestnut leaves are sensitive to a number of powdery mildews such as the North American *Erysiphe flexuosa* (Peck) Barun & Takamatsu (Ascomycota, Erysiphales), introduced to Europe at the turn of the century (Ale-Agha, Braun, Feige, & Jage, 2000; Kiss, Vajna, & Fischl, 2004; Stankeviciene, Snieskienë, & Lugauskas, 2010; Tozlu & Demirci, 2010; Zimmermannová-Pastirčáková & Pastirčák, 2002) including Britain (Ing & Spooner, 2002). *Erysiphe flexuosa* also affects *A. carnea* (Irzykowska et al., 2013; Werner, Irzykowska, & Karolewski, 2012). It causes small, white patches on the leaves that then expand to cover both leaf surfaces. In Poznań, Poland, infection has been found to reach up to 50% of leaf area (Irzykowska et al., 2013). Both young and old leaves are usually infected. It causes more damage on vigorous trees and pruned trees with large sprouts (Snieskienë et al., 2011), but in many cases, infected trees were found next to uninfected ones (Irzykowska et al., 2013). Trees that are more resistant to *Cameraria ohridella* (Section 9.1.1) are also more resistant to *E. flexuosa* (Werner et al., 2012).

Guignardia leaf blotch is found in Europe, North America and South Korea (Pastirčáková, Pastirčák, Celař, & Shin, 2009), including Britain (Hudson, 1987), and affects various Aesculus species. The casual fungus, *Guignardia aesculi* (Peck) Stewart (=*Phylllosticta paviae* Desm.; Ascomycota, Incertae sedis: conidial anamorph *Phylllosticta sphaeropsidea* Ellis & Everh., spemtiall sanymanomorph *Leptodothiorella aesculicolica* Höhn.; Pastirčáková et al., 2009), produces reddish or dull brown necrotic areas with bright yellow borders in horse-chestnut leaves. These "blotches" are usually at the tips or edges of leaves. The yellow border helps distinguish this from the leaf miner *Cameraria ohridella* (Section 9.1.1). Horse-chestnut is moderately susceptible to *Guignardia* (Ćalić et al., 2013) but it seems to cause little significant damage.

Horse-chestnut can carry many epiphytes. Of the 13 tree species investigated in central Switzerland by Ruoss (1999), horse-chestnut carried the most lichen species (114), compared to *Acer pseudoplatanus* (93) and *Fraxinus excelsior* (52). Papp, Alegro, Šegota, Šapić, and Vukelić (2013) list 11 bryophytes found on horse-chestnut in Croatia, and Seaward and Letrouit-Galinou (1991) list seven species found on Paris trees. In Britain, this is somewhat lower; Bates, Proctor, Preston, Hodgetts, and Perry (1997) found <1 species of bryophyte per tetrad on horse-chestnut along a transect across southern England, and was ranked 20th out of a list of 52 host taxa, although this result is undoubtedly partly due to the low density of horse-chestnuts in this area compared to native species. Horse-chestnut is a rare host of the hemiparasite *Viscum album*. Slime moulds (*Amoebooza, Myxomycetes*) associated with horse-chestnut are given in Table 3.

9.3 | Plant diseases

The apple mosaic virus (Group 4, Bromoviridae) has been observed to cause a severe yellow mosaic disease on leaves of horse-chestnut trees (Sweet & Barbara, 1979). The Strawberry latent ringspot virus (Group 4, Picornavirales) was detected in one of six trees with a leaf vein yellows disease (Sweet & Barbara, 1979).

Fungi associated with horse-chestnut, excluding those on soil or litter below the trees, or those found solely on dead wood, are given in Table 4. *Colletotrichum acutatum* Simmonds and *C. gloeosporioides* (Ascomycota, Glomerellales) have been found on horse-chestnut leaves in Norway (Talgø et al., 2012).

9.3.1 | Phytophthora

Since 1969, a number of Phytophthora spp. (Oomycota, Peronosporales) have been isolated from dead and dying roots and stems of horse-chestnut in England including *P. megasperma* var. *megasperma* Drechsler, *P. citrulina* Saw., *P. cactorum* (Leb., & Cohn.) Schroet. *P. cin namomi* Rands and possibly *P. cambivora* Petri (Brasier & Strouts, 1976; British Mycological Society, 2018; Strouts & Winter, 2000). These are known to cause small-scale bleeding cankers on horse-chestnuts and other tree species, such as *Tilia* spp. Since 2001/2002, stem bleeding on *A. hippocastanum* has become more prevalent in Britain and horse-chestnut leaves have been seen to be moderately susceptible to *P. ramorum* (similar to *Quercus* spp., *Castanea sativa* and *Taxus baccata*) but more susceptible to *P. kernoviae* Brasier than most other woody plants (Brasier & Jung, 2006; Denman, Kirk, Whybrow, Orton, & Webber, 2006). *Phytophthora obscura* Grünw. & Werres, *P. cactorum*, *P. citrulina* and *P. syringae* (Klep.) Kleb. have been identified under diseased horse-chestnuts with bleeding canker in Germany (Grünwald, Werres, Goss, Taylor, & Fieland, 2012; von Werres, Richter, & Veser, 1995).

9.3.2 | Chestnut bleeding canker

Bleeding cankers on horse-chestnut bark have become more common this century, partly due to Phytophthora spp., as described above. However, since 2001/2002, bleeding cankers have become significantly more common throughout Britain, Ireland and western mainland Europe (McEvoy et al., 2016). In the majority of cankers sampled, the gram-negative bacterium *Pseudomonas syringae* pv. *aesculi* (Pae) has been identified as the cause (Webber et al., 2008). In 2007, over 70% of horse-chestnut trees surveyed in England, 42% in Scotland and 36% in Wales had symptoms of bleeding canker (Forestry Commission, 2008). Similar rates of infection have been seen in the Netherlands, with more urban trees infected than rural trees (Webber et al., 2008).

The disease is most prevalent in cool, wet climates of north-west Europe (Kennelly, Cazorla, de Vicente, Ramos, & Sundin, 2007), and the pathogen is thought to originate from the Himalayas where it infects leaves of *A. indica*. Isolates of Pae in Britain were found to be genetically virtually identical to each other and to isolates from the Netherlands and Belgium, so the epidemic in north-west Europe is likely descended from a single, recent introduction of the pathogen into western Europe, possibly from India (Green et al., 2010; McEvoy et al., 2016).
Symptoms are rust-coloured or blackened liquid oozing from necrotic lesions (“bleeding cankers”) in the bark of the trunk up to small diameter branches (Green, Laue, Fossdal, A’Hara, & Cottrell, 2009; Green, Laue, Steele, & Nowell, 2014; Webber et al., 2008). The infection penetrates the cambium and phloem, but there is little evidence of it penetrating the wood (Steele, Laue, MacAskill, Hendry, & Green, 2010) or of systemic spread through the vascular tissue. It spreads primarily by lateral invasion of parenchymal cells, producing local infections that spread by 70–1,000 μm/day. There may also be some local spread along phloem fibres leading to elongated necrotic areas (Bultreys, Gheysen, & Planchon, 2008). Horse-chestnut produces a number of antifungal and antibacterial proteins (Ah-AMP1 and β-1,3-glucanase and peroxidase) as a plant defence (Fant, Vranken, & Borremans, 1999; Osborn et al., 1995). However, once within the host the bacterial cells persist within a mucoid gel which may help isolate them from outside stressors or toxins (e.g., Keith & Bender, 1999) and host defences.
TABLE 4 Fungi (by Order) directly associated with *Aesculus hippocastanum* not including those found on soil or litter below the trees, or those found solely on dead wood. Details of these can be found in the Fungal Records Database of Britain and Ireland (British Mycological Society, 2018). Nomenclature follows this database.

Species/classification	**Ecological notes**
Oomycota |
Peronosporales
C. intermedium (de Bary)
Uzuhashi, Tojo & Kakish.
Bark

Ascomycota |
Botryosphaeriales
G. aesculi (Peck) V.B. Stewart
Necrotic spots on leaves

Capnodiales
Ramularia endophylla Verkley & U. Braun
Fallen leaves

Septoria hippocastani Berk., & Broome
Living and fallen leaves

Diaporthales |
Diaporthe coneglanensis Sacc., & Speg.
Necrotic spots on fading leaves

Ophiognomonia setacea (Pers.) Sogonov
Petioles, dead leaves

Erysiphales
Leaves

Eurotiales
Penicillium sp. Link
Old fruits

Heliotiales
Botryotinia fuckeliana (de Bary) Whetzel
Fallen fruits

Botrytis cinerea Pers.
Live leaves

F. fascicularis (Corda) Sacc.
Fruits

Calycellina lachnobrachya (Desm.) Baral
Fruits

C. subhyalinum (Rehm) S.E. Carp.
Petioles, fruits

Gibberella baccata (Wallr.) Sacc.
Fruits

Hyaloscypha fuckelii var. *fuckelii* Nannf.
Old fruits

Hymenoscyphus baccata (Wallr.) Sacc.
Fruits

Hyaloscypha fuckelii var. *fuckelii* Nannf.
Old fruits

H. *albidus* (Gillet) W. Phillips
Decaying petioles

H. albopunctus (Peck) Kuntze
Dead leaves

H. calyculus (Sowerby) W. Phillips
Old fruits

H. caudatus (P. Karst.) Dennis
Fallen leaves, decaying petioles

H. fructigenus (Bull.) Fr.
Old fruits

Lachnum niveum (R. Hedw.) P. Karst.
Falling leaves

L. *virgineum* (Batsch) P. Karst.
Falling leaves

Lanzia echinophila (Bull.) Korf
Old fruits

Leptodontidium trabinellum (P. Karst.) Baral, Platas & R. Galan
Fruits

Niptera subbriatorina Rehm
Fruits

Hypocreales |
Cylindrocladium *album* Bonord.
Fruits

Fusidium griseum Ditmar
Leaves

Volutella ciliata (Alb., & Schwein.) Fr.
Live bark

Incertae sedis |
Camposporium *pellucidum* (Grove) S. Hughes
Fruits

Chalara *aura* (Corda) S. Hughes
Fruits

C. cylindrosporoides (Corda) S. Hughes
Fruits

C. rhyncophialis Nag Raj & W.B. Kendr.
Fruits

Haplania sphaerica Oudem.
Fruits

Polyscytalum *fucundissimum* Riess
Fallen leaves

Torula *herbarum* (Pers.) Link
Fruits

Lecanorales |
R. fraxinea (L.) Ach.
Lichen, bark

Ostropales |
Dimerella *pineti* (Schrad.) Vezda
Lichen, live bark

Phlyctis *argena* (Ach.) Flot.
Lichen, live bark

Pleosporales |
Anguillospora *longissima* (Sacc., & P. Syd.) Ingold
Bud scales

Clavariopsis *aquatica* De Wild.
Bud scales

Peltigera membranacea (Ach.) Nyl.
Lichen, live bark

Pertusariales |
Pertusaria *leioplaca* DC.
Lichen, bark

P. pertusa (Weigel) Tuck.
Lichen, bark

Teloschitales |
Amandinea *punctata* (Hoffm.) Coppins & Scheid.
Lichen, live bark

Calicium *viride* Pers.
Lichen, bark

Live bark

Xylariales |
Annulohypoxylon *multiforme* (Fr.) Y.M. Ju, J.D. Rogers & H.M. Hsieh
Bark, dead wood

Basidiomycota |
Agaricales
Armillaria *gallica* Marxm., & Romagn.
Roots, base of live trunk

(Continues)
<table>
<thead>
<tr>
<th>Species/classification</th>
<th>Ecological notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. mellea (Vahl) P. Kumm.</td>
<td>Roots, base of live trunk</td>
</tr>
<tr>
<td>A. ostoyae (Romagn.) Herink</td>
<td>Stump</td>
</tr>
<tr>
<td>Arrhenia acerosa (Fr.) Kühner</td>
<td>Fallen petioles</td>
</tr>
<tr>
<td>A. mellea</td>
<td>Leaves</td>
</tr>
<tr>
<td>Pers.</td>
<td>Athelia epiphylla (Pers.)</td>
</tr>
<tr>
<td>A. ostoyae</td>
<td>Leaves</td>
</tr>
<tr>
<td>Arrhenia acerosa (Fr.) Kühner</td>
<td>Fallen petioles</td>
</tr>
<tr>
<td>Postia ptychogaster (Pers.)</td>
<td>Live branch, dead wood</td>
</tr>
<tr>
<td>Trametes ochracea (Pers.)</td>
<td>Live branch, dead wood</td>
</tr>
<tr>
<td>T. versicolor (L.) Piát</td>
<td>Live trunk, dead wood</td>
</tr>
</tbody>
</table>

The disease can result in foliar discoloration and crown dieback when lesions girdle branches (Green et al., 2010), but possible resistance to the disease has been observed. For example, Pánková, Krejzar, Mertelik, and Kloudová (2015) found in the Czech Republic that 2–3 years after infection with Pae there was a natural resistance with 40% of trees appearing to be resistant, 40% tolerant (not appreciably affected by infection with small lesions) and 20% susceptible. Resistant and tolerant trees maintain healthy crowns, and disease progression is slow or stops, and may even show signs of recovery with new callus development around the edge of the cankers. Trees are known to have survived for a decade or more with half of their bark area affected. A study in southern England found that Pae was responsible for the death or removal of 11% of A. hippocastanum and 27% of A. carnea, and surviving trees showed a decrease in growth rate by 22% between 2003 and 2012, and a decline in crown density by 4%–5% (Straw & Williams, 2013). The biggest threat appears to be the cankers merging around the main trunk and girdling the tree leading to death (Steele et al., 2010). Secondary agents such as Phytophthora may also gain access to a diseased tree and be the ultimate cause of death.

The spores of Pae are spread mainly in wind-blown rain, possibly over long distances at high altitude. Pae can survive for at least a year in soil even without host debris and can survive when stored in a nutrient solution for a year at −80°C, so is very robust (Laue, Steele, & Green, 2014). Although it is a bark pathogen, it has also been found within leaves of horse-chestnut in Britain, and leaves can be artificially infected with it, but it is not known whether leaves play a role in spreading the disease (Mullett & Webber, 2013). The bacterial cells enter branches directly through leaf scars or branch axils and lenticels (Laue et al., 2014; Steele et al., 2010).

Pae has been seen to affect trees of all ages. Koskella, Meaden, Crowther, Leimu, and Metcalf (2017) found that both the leaf miner Cameraria ohridella and Pae are associated with taller, larger trees but Pae is also more prevalent on young fast-growing horse-chestnuts while the leaf miner is most common on taller trees. This is undoubtedly a spatial preference rather than a direct interaction between the two organisms at a landscape level. Leaf miner presence does not appear to be spatially linked to Pae symptoms, and it is unlikely that the leaf miner is a vector of Pae (Koskella et al., 2017). Within an individual tree, however, Pae canker size was positively correlated with leaf miner infestation, probably due to the suppression of tree defences as a result of leaf miner defoliation (Percival & Banks, 2014).

Pae infections have been successfully treated with potassium and silicon phosphites that act to prevent, and to a lesser extent reduce the impact of, infection (Percival & Banks, 2015). Heating 4-year-old saplings at 39°C for 48 hr kills all Pae in wounds (de Keijzer, van den Broek, Ketelaar, & van Lammeren, 2012).

HISTORY

Based on molecular phylogenetic reconstruction of the genus and fossil evidence, Aesculus evolved in eastern Asia at the Cretaceous/
Tertiary boundary c. 65 MYA (Xiang et al., 1998). From there, two major lineages spread into Europe and North and Central America via the Bering Land Bridge as an element of the boreotropical flora (Hardin, 1960; Harris et al., 2009; Manchester, 2001; Xiang et al., 1998). Forest et al. (2001) suggested an American origin for Aesculus with a single migration to Eurasia, but this now appears unlikely. The closely related Japanese A. turbinata and A. hippocastanum split apart 15.5 ± 1.93 MYA or earlier in the middle Miocene (Xiang et al., 1998). Most of the Eurasian lineage was lost during the Miocene and Pliocene, but fossil evidence indicates that A. hippocastanum was widespread throughout Europe during the Miocene–Pliocene, when warm climatic conditions were optimal for this species (Mijarra, Manzaneque, & Morla, 2008) and it was distributed from North Africa and the Iberian Peninsula to northern Europe.

Pleistocene pollen records are mostly confined to the Mediterranean Basin, from Barcelona through to Turkey and the Caucasus Mountains in the east (Mijarra et al., 2008). Large amounts of Aesculus pollen (up to 15%) have been recorded in early Pleistocene sediments from Leffe, Italy (Ravazzi, 2003). Aesculus hippocastanum persisted in the Quaternary refugia of the Balkans, Italian and Iberian Peninsulas (Postigo-Mijarra, Gómez-Manzaneque, & Morla, 2008; Tsiroukis, 2008). By the end of the Middle Pleistocene, A. hippocastanum was restricted to its current native distribution in the Balkan Peninsula (Grove & Rackham, 2001; Prada, Velloza, Toorop, & Pritchard, 2011; Xiang et al., 1998). Gobet et al. (2017) noted an increase in fruit and fodder tree pollen, including Aesculus, along with crop and weed pollen in Ukraine around 6,500–6,000 BP suggesting the involvement of Aesculus in Neolithic agriculture.

When first introduced into modern cultivation, its native origins were unknown. Linnaeus (1753) suggested that it was native to the northern regions of Asia, near the Himalayas, and North India was long regarded as its original home (Bean, 1976) and as late as 1837, Loudon (1838) suggested North America. In 1795, John Hawkins almost certainly found natural stands in Greece, but these were only confirmed by Theodor von Holdreich in 1879 (Lack, 2000, 2002).

As recently as 1945, Howard (1945) thought that horse-chestnut might have been introduced via Iran, northern India or Tibet. However, it is now believed that horse-chestnut was introduced to various parts of Europe by the Romans (Bradshaw, 2004) and that European diplomats came across the horse-chestnut in Constantinople and seeds were sent to Prague in 1557 (Lack, 2000). These seeds were reportedly non-viable, and it almost certainly reached western Europe from seedlings sent to Vienna, again from Constantinople, in 1576 (Bean, 1976; Leathart, 1991). It was first grown in central Europe, primarily Vienna, in the 16th century before being spread throughout Europe (Lack, 2000). It reached France in 1615, and many avenues were lined with horse-chestnut trees (Loenhart, 2002). It was growing in Tradescant’s Lambeth garden in 1633 and so probably arrived in England at the same time as in France (Leathart, 1991). Evelyn (1664) mentioned the fashion of planting horse-chestnut in avenues, most famously at Bushy Park, Hampton Court, and Loudon (1838) listed many specimens that were then 80–100 years old. Horse-chestnut was introduced into the United States around 1828 but has been largely surpassed by A. carnea (Leathart, 1991). John Gerard appreciated the tree, saying "[t]he Horse-chestnut growth likewise to be a very great tree, spreading his great and large arms or branches far aboard, by which means it maketh a very good coole shadow" (Gerard, 1633).

10.1 Uses

The horse-chestnut flower is the symbol of the city of Kiev in the Ukraine, and it is traditionally planted in Bavarian beer gardens (Loenhart, 2002). Further cultural connections include the Anne Frank Tree in Amsterdam which she mentions in her diary and which sadly snappd in high wind in August 2010 (Gray-Block, 2010). It is locally planted as a forestry tree in, for example, the Czech Republic (Křivánek et al., 2006). The biggest use of horse-chestnut, however, is in medicine, reflected in the voluminous medical literature in comparison with a comparatively small ecological literature.

The common name may have come from the use of seeds to treat horses for overexertion, colic and coughs by the Turks and Ancient Greeks (Bombardelli et al., 1996; Vokou, Katradi, & Kokkin, 1993). Extracts of seeds, bark and leaves have long been used in traditional and folk medicine (Tiffany et al., 2002). The triterpenoid saponins extracted from the seed have been used as a treatment for rheumatism, coughs, rectal complaints including haemorrhoids, bladder and gastrointestinal disorders, fever (the first written account in 1720) and leg cramps (Anon, 2009; Küçükkurt et al., 2010; Sirtori, 2001; Zhang et al., 2010). In Bosnia and Herzegovina, Redžić (2007) records that horse-chestnut “fruits” are still carried by people who suffer from rheumatism and sciatica.

Currently, extracts from horse-chestnut seeds are widely used to treat peripheral vascular disorders including chronic venous insufficiency, haemorrhoids and post-operative oedema (Dickson, Gallagher, McIntyre, Suter, & Tan, 2004; Dudek-Makuch & Studzińska-Sroka, 2015; Facino, Carini, Stefani, Aldini, & Saibene, 1995; Gurel et al., 2013; Pittler & Ernst, 1998; Ruffini, Belcaro, Studzińska-Sroka, 2015; Facino, Carini, Stefani, Aldini, & Saibene, 1993). Extracts of seeds, bark and leaves have long been used to treat horses for overexertion, colic and coughs by the Turks and Ancient Greeks (Bombardelli et al., 1996; Vokou, Katradi, & Kokkin, 1993).

Extracts of seeds, bark and leaves have long been used in traditional and folk medicine (Tiffany et al., 2002). The triterpenoid saponins extracted from the seed have been used as a treatment for rheumatism, coughs, rectal complaints including haemorrhoids, bladder and gastrointestinal disorders, fever (the first written account in 1720) and leg cramps (Anon, 2009; Küçükkurt et al., 2010; Sirtori, 2001; Zhang et al., 2010). In Bosnia and Herzegovina, Redžić (2007) records that horse-chestnut “fruits” are still carried by people who suffer from rheumatism and sciatica.

Extracts of seeds, bark and leaves have long been used in traditional and folk medicine (Tiffany et al., 2002). The triterpenoid saponins extracted from the seed have been used as a treatment for rheumatism, coughs, rectal complaints including haemorrhoids, bladder and gastrointestinal disorders, fever (the first written account in 1720) and leg cramps (Anon, 2009; Küçükkurt et al., 2010; Sirtori, 2001; Zhang et al., 2010). In Bosnia and Herzegovina, Redžić (2007) records that horse-chestnut “fruits” are still carried by people who suffer from rheumatism and sciatica.

Extracts of seeds, bark and leaves have long been used in traditional and folk medicine (Tiffany et al., 2002). The triterpenoid saponins extracted from the seed have been used as a treatment for rheumatism, coughs, rectal complaints including haemorrhoids, bladder and gastrointestinal disorders, fever (the first written account in 1720) and leg cramps (Anon, 2009; Küçükkurt et al., 2010; Sirtori, 2001; Zhang et al., 2010). In Bosnia and Herzegovina, Redžić (2007) records that horse-chestnut “fruits” are still carried by people who suffer from rheumatism and sciatica.

Extracts of seeds, bark and leaves have long been used in traditional and folk medicine (Tiffany et al., 2002). The triterpenoid saponins extracted from the seed have been used as a treatment for rheumatism, coughs, rectal complaints including haemorrhoids, bladder and gastrointestinal disorders, fever (the first written account in 1720) and leg cramps (Anon, 2009; Küçükkurt et al., 2010; Sirtori, 2001; Zhang et al., 2010). In Bosnia and Herzegovina, Redžić (2007) records that horse-chestnut “fruits” are still carried by people who suffer from rheumatism and sciatica.
et al., 1994), reduce cholesterol in mice fed a high-fat diet (Avci, Küçükkurk, Akkol, & Yeşilada, 2010) and protect against bacterial endotoxemic injuries in mice livers (Jiang et al., 2011). Seed extracts also have anti-inflammatory and anti-oedematous properties (Dumitriu, Olariu, Nita, Zglimbe, & Rosoiu, 2013; Matsuda et al., 1997; Sirtori, 2001; Vasiliauskas, Leonavičienė, Valktiënė, Braduanië, & Lukšienė, 2010; Wilkinson & Brown, 1999) and so have proved effective at clearing skin conditions as an antiwrinkle treatment and in reducing skin ageing (Fujimura et al., 2007; Masaki, Sakaki, Atsumi, & Sakurai, 1995) and may help against celllulite and hair loss (Bellini & Nín, 2005). Extracts of leaves and the bark of young branches have also proved effective as an antioxidant and anti-inflammatory drug (Braga et al., 2012; Margiño et al., 2015) and one of the most effective plant extracts in inhibiting Candida albicans (Tambur et al., 2018).

Perhaps not surprisingly, seeds have proved poisonous. Ingestion of seeds can cause anaphylaxis (Jaspersen-Schib, Theus, Guirguis-Andrzejewski, & Skórczewska, 2018). And saponins are poorly absorbed in the gut and are largely destroyed by heating, so roasting horse-chestnuts or fermentation to produce acetone. More recently, starch from the seeds has been used as a coffee substitute (Loenhart, 2002) and can be extracted in hot water and used as a substitute for soap. An infusion of horse-chestnut seeds can be used to bring worms to the soil surface (Loenhart, 2002). Bainbridge (1984) also records the ability to regenerate freely (Section 5.2). The Greek population is currently be 163,642 km², c. 25% of the Balkan Peninsula (Allen & Khela, 2017), with perhaps as many as 10,000 mature trees (Allen & Khela, 2017). However, despite its abundance as a planted ornamental tree, it appears to be declining in its native range, despite the ability to regenerate freely (Section 5.2). The Greek populations have satisfactory regeneration in only 6% of the areas and no regeneration in 62% (Avtzis et al., 2007; Tsiroukis, 2008). In Freiburg, Germany, NOx and O3 levels were reduced by 45% (down to 19 μg/m³) and 55% (down to 37 μg/m³), respectively, below horse-chestnut trees (Streiling & Matzarakis, 2003).

The best known use of whole seeds is in playing the sadly declining children’s game of conkers or “conquerors” (Bean, 1976). Traditionally, conkers have also been used to repel spiders but this was convincingly disproved by Roselyon Primary School, Cornwall, using choice experiments (Anon, 2010). Bainbridge (1984) records that children were used to collect conkers in WWI as a source of pig food. The boiling and leaching remove many of the minerals and vitamins, leaving starch which is fairly edible (Mabey, 1972). Ground seeds have been used as a coffee substitute (Loenhart, 2002) and the bark of young branches have also proved effective as an antioxidant and anti-inflammatory drug (Braga et al., 2012; Margiño et al., 2015) and one of the most effective plant extracts in inhibiting Candida albicans (Tambur et al., 2018).

The fruit shells of horse-chestnut have shown promise as a biosorbent of chromium and copper from aqueous solutions (Parlayci & Pehlivian, 2015; Parus, 2018). Nanoparticles of ZnO, 50–100 nm diameter, have also been produced from the fruit shells (Colak, Karaköse, & Duman, 2017). Leaves heated to 450°C and so partially carbonised have been used in absorbing ions from sewage (Saponova, Sverguzova, Sulim, Svyatchenko, & Chebotaeva, 2018). The wood is soft and comparatively weak and has found few uses but they include kitchen utensils and dishes, brush backs, toys, prosthetic limbs and occasionally veneers (Bean, 1976; Mitchell, 1997). The wood does not burn particularly well, but its charcoal has been used in making gunpowder (Leathart, 1991; von Maltitz, 2003). In southern Europe, the wood has been used for fruit-storing shelves as the porous nature absorbs moisture preserving the fruit (Howard, 1945).

Horse-chestnut gives good shelter as a street tree. Leuzinger, Vogt, and Körner (2010) recorded that horse-chestnut crown temperatures in Basel, Switzerland, were 1°C below ambient, compared to 4°C above ambient in Acer platanoides. This has the effect of reducing the apparent temperature below the crown by 7.5–10.0°C (Kántor, Chen, & Gál, 2018; Streiling & Matzarakis, 2003). In Freiburg, Germany, NOx and O3 levels were reduced by 45% (down to 19 μg/m³) and 55% (down to 37 μg/m³), respectively, below horse-chestnut trees (Streiling & Matzarakis, 2003).

11 | CONSERVATION

Despite the recent pests and diseases experienced by horse-chestnut (Sections 9.1 and 9.3), its distribution and abundance in Britain do not appear to be declining, and it may even be expanding its range slightly. Preston et al. (2002) show a small but probably insignificant increase (+1.08) in distribution between 1930–1960 and 1987–1999, and Braithwaite, Ellis, and Preston (2006) show a similar small increase in British distribution (+38 tetrads) between 1987–1988 and 2003–2004, similar to Prunus padus and Ligustrum ovalifolium. Preston et al. (2002) note that horse-chestnut was better recorded in south-west England, Wales and Ireland between 1962 and 2002, which may account for some of the increase.

The native range of horse-chestnut (Section 1) is estimated to currently be 163,642 km², c. 25% of the Balkan Peninsula (Allen & Khela, 2017), with perhaps as many as 10,000 mature trees (Allen & Khela, 2017). However, despite its abundance as a planted ornamental tree, it appears to be declining in its native range, despite the ability to regenerate freely (Section 5.2). The Greek populations have satisfactory regeneration in only 6% of the areas and no regeneration in 62% (Avtzis et al., 2007; Tsiroukis, 2008). It also appears to be declining in Albania, where the population is smaller than c. 500 individuals, and in Macedonia where the population is probably <100 individuals (Allen & Khela, 2017; Peçi et al., 2012). Bulgarian populations are also small and limited in area (Evstatieva, 2011).
The main threats to many of the native populations of horse-chestnut are undoubtedly the leaf miner moth Cameraria ohridella which impairs reproduction (Section 9.1.1) and its limited ability to disperse to new areas (Section 8.3). Other threats include deforestation and forestry, firewood collection, forest fires, increasing water demand for irrigation, mining, overgrazing, tourism development and pollution, and population fragmentation affecting spread and microclimate (Allen & Khela, 2017; Evstatieva, 2011; Gussev & Vulchev, 2015; Laras, 2004). Mountain tourism, ski facilities and road construction are also degrading large mountain forest ecosystems within its native range although the Pindos Mountains still host significant old-growth forest stands on inaccessible high mountain slopes and canyons (WWF, 2013). Collecting seeds for herbal medicine and larger-scale pharmaceutical use is also taking its toll on population regeneration (Tsiroukis, 2008; WWF, 2013).

The potential effects of climate change on horse-chestnut have been largely unstudied (Section 7.1), but it is considered that although horse-chestnut is regarded as sensitive to environmental changes (Łukasiewicz, 2003; Łukasiewicz & Oleksyn, 2007), the effects of current scenarios on population size and distribution will be minor (Walas et al., 2018).

As a consequence of the decline, horse-chestnut in its native range is classified as Vulnerable or Near Threatened using IUCN criteria (Allen & Khela, 2017) and is considered as Endangered or Critically Endangered in Bulgaria and Albania (Evstatieva, 2011; Gussev & Vulchev, 2015).

Horse-chestnut is known to occur in protected areas in Albania, Greece and Bulgaria, including national parks/reserves and Natura 2000 sites (Allen & Khela, 2017), but this includes relatively few of the natural populations, particularly in Greece (Avtzis et al., 2007). Moreover, in Greece horse-chestnut is included in the national list of protected species of the Presidential Decree 67/1981 (Walas et al., 2018), but is not in the Red List of Greece (Photios, Konstantinidis, & Kamari, 2009). There are thus concerns about the long-term future of the small number of native populations.

ACKNOWLEDGEMENTS

The Iraqi Ministry of Higher Education and Scientific Research is thanked for the support of Omar Alhamd. Harvard University is gratefully acknowledged for the provision of a Fellowship in Harvard Forest to Peter Thomas and access to the resources that this brings. We are very grateful to Sarah Green, Marian Giertych, Radostaw Jagiełło and Jerzy Zieliński for their unstinting sharing of information/help.

REFERENCES

Dziguelewskaw, M., & Kaup, G. (2008). Effectiveness of chemical control of the horse-chestnut leaf miner with insecticides from the group
of chitin biosynthesis inhibitors with the use of methods of soil application and microinjection. Ecological Chemistry and Engineering A, 15, 253–258.

