
Hydraulic safety margins and air-seeding thresholds in roots,
trunks, branches and petioles of four northern hardwood trees

Jay W. Wason1 , Katherine S. Anstreicher1, Nathan Stephansky2, Brett A. Huggett2 and Craig R. Brodersen1

1School of Forestry & Environmental Studies, Yale University, New Haven, CT 06511, USA; 2Department of Biology, Bates College, Lewiston, ME 04240, USA

Author for correspondence:
Jay W. Wason
Tel: +1 203 432 5151

Email: jay.wason@yale.edu

Received: 22 December 2017

Accepted: 28 February 2018

New Phytologist (2018) 219: 77–88
doi: 10.1111/nph.15135

Key words: Acer rubrum, air-seeding thresh-
old, embolism, Fagus grandifolia, Fraxinus
americana,Quercus rubra, segmentation,
xylem.

Summary

� During drought, xylem sap pressures can approach or exceed critical thresholds where gas

embolisms form and propagate through the xylem network, leading to systemic hydraulic

dysfunction. The vulnerability segmentation hypothesis (VSH) predicts that low-investment

organs (e.g. leaf petioles) should be more vulnerable to embolism spread compared to high-

investment, perennial organs (e.g. trunks, stems), as a means of mitigating embolism spread

and excessive negative pressures in the perennial organs.
� We tested this hypothesis by measuring air-seeding thresholds using the single-vessel air-

injection method and calculating hydraulic safety margins in four northern hardwood tree

species of the northeastern United States, in both saplings and canopy height trees, and at five

points along the soil–plant–atmosphere continuum.
� Acer rubrum was the most resistant to air-seeding and generally supported the VSH. How-

ever, Fagus grandifolia, Fraxinus americana and Quercus rubra showed little to no variation

in air-seeding thresholds across organ types within each species.
� Leaf-petiole xylem operated at water potentials close to or exceeding their hydraulic safety

margins in all species, whereas roots, trunks and stems of A. rubrum, F. grandifolia and

Q. rubra operated within their safety margins, even during the third-driest summer in the last

100 yr.

Introduction

The predicted rise in drought intensity and return frequency is
expected to both reduce tree productivity and increase tree mor-
tality (Choat et al., 2012; Anderegg & Meinzer, 2015), which has
been mechanistically linked to hydraulic failure of the xylem net-
work and commensurate loss of water supply to the canopy (Bro-
dribb & Cochard, 2009; Allen et al., 2010; Choat et al., 2012;
Urli et al., 2013; Adams et al., 2017). Hydraulic failure arises due
to the inherent metastability of xylem sap as it moves through a
complex network of conduits under negative pressure (Dixon &
Joly, 1895; Zimmermann, 1983). The xylem conduits are there-
fore vulnerable to the formation of gas embolisms that block
water transport (Tyree & Sperry, 1989).

Xylem network vulnerability to systemic embolism spread
should then be based on the frequency and distribution of inter-
conduit connections, and the resistance of the pit membranes
therein, to the movement of air between conduits. This resistance
is typically characterized as the negative pressure required to pull
gas into an adjacent water-filled conduit across the pit membrane
(‘air-seeding threshold’; Zimmermann, 1983). That pressure
threshold is thought to be determined by the effective pore radius
along the tortuous pathway through the pit membrane, where
the pore radius determines the pressure differential supported by
the air–water interface (i.e. meniscus) according to the Young–

Laplace equation, although the exact mechanisms are still
unclear. Thus, the same pathway that increases xylem network
redundancy by providing alternate pathways for water flow also
can facilitate the spread of air embolisms that render the network
dysfunctional. Xylem-network connectivity, interconduit air-
seeding pressures, and the spatial distribution of air in the net-
work are predicted to be the major factors driving the shape of
xylem vulnerability curves. Although xylem-network connectivity
determines where embolisms spread in the network (Loepfe et al.,
2007; Mencuccini et al., 2010; Brodersen et al., 2011; Lee et al.,
2013), the air-seeding threshold of pit membranes provides infor-
mation about when embolisms begin to spread during drought
conditions (cf. ‘air-entry point’; Meinzer & McCulloh, 2013).

To date, the single-vessel air-seeding threshold of intervessel
pit membrane connections has been studied in relatively few ves-
sel-bearing species (Melcher et al., 2003; Choat et al., 2004,
2005; Jansen et al., 2009; Christman et al., 2012; Johnson et al.,
2014; Pratt et al., 2015; Venturas et al., 2016); however, the
air-seeding threshold often appears to be a variable trait. In our
evaluation of published air-seeding data, most studies report that
40–50% of vessels within an organ embolize before pressures
reach �1MPa, with a maximum of c. 80% (Pratt et al., 2015).
Meanwhile, the remaining vessels in the same organ were highly
resistant, with air-seeding values ranging from �1 to �5MPa.
By contrast, Acer saccharum air-seeding thresholds have been
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shown to have less variability within an organ (e.g. petioles,
stems, trunks, roots) than other species, and A. saccharum shows
consistent mean differences in air-seeding threshold when com-
paring across organs (Melcher et al., 2003; Choat et al., 2005).
Therefore, it is uncertain how air-seeding thresholds, an impor-
tant driver of drought resistance and the shape of xylem vulnera-
bility curves, vary within and across species and plant organs.

The vulnerability segmentation hypothesis (VSH; Tyree &
Zimmermann, 2002) predicts that xylem in low-cost, distal
organs (e.g. leaves and fine roots) should be more vulnerable to
embolism spread than xylem in higher-cost organs (e.g. trunks
and stems). When constructed this way, embolism spread in
leaves would stop water loss and protect the more permanent,
high-investment organs from increasingly negative xylem sap
pressures (Zimmermann, 1983; Tyree et al., 1993; Tsuda &
Tyree, 1997; Tyree & Zimmermann, 2002; Johnson et al.,
2016). However, as plants transpire, xylem sap potentials become
more negative with increasing distance from the soil. Therefore, a
hypothetical plant constructed with equal air-seeding thresholds
in all organ types (i.e. not constructed following the VSH) would
still be expected to have embolisms first form and spread in
organs experiencing the most negative water potentials – leaf
xylem. Studies have found evidence for (Tsuda & Tyree, 1997;
Choat et al., 2005; Bucci et al., 2012; Charrier et al., 2016;
Hochberg et al., 2016; Johnson et al., 2016) and against
(Cochard et al., 1992; Hao et al., 2013; Bouche et al., 2016; Skel-
ton et al., 2017) the VSH, suggesting it may not be an universal
strategy across species (Hacke & Sauter, 1996; Brodersen, 2016;
Zhu et al., 2016).

Although the air-seeding threshold of xylem vessels is impor-
tant, it is most relevant to plant productivity and survival within
the broader context of the xylem pressures that plants experience
in the field (Choat et al., 2012; Delzon & Cochard, 2014). The
‘hydraulic safety margin’, defined as the most negative water
potential experienced by plants minus the water potential leading
to significant hydraulic failure, provides a metric of how close
plants are to hydraulic failure in the field (Meinzer et al., 2009).
Importantly, increasing the air-seeding threshold of a specific
organ via more resistant or fewer pit membranes may come with
an associated cost of reduced hydraulic conductivity, although it
remains unclear how strong this trade-off is in woody plants
(Gleason et al., 2016). Furthermore, vulnerability curves and
safety margins are most commonly available for branches,
whereas data for leaves, petioles, trunks and roots are less com-
mon. Understanding air-seeding thresholds and safety margins in
organs with different biomechanical roles is critical for under-
standing what trade-offs and selective pressures exist in the con-
struction of the xylem of woody plants.

The goal of this study was to measure the air-seeding thresh-
olds of roots, trunks, branches and petioles along with the mid-
day water potentials experienced by those organs to (1)
determine if the VSH is supported and (2) establish hydraulic
safety margins for two ring-porous and two diffuse-porous tree
species in the northeastern United States. Single-vessel air-
seeding thresholds were then compared to points from benchtop
dry-down vulnerability curves in current-year stems to determine

how the air-seeding thresholds relate to whole-organ vulnerabil-
ity. Single-vessel air-seeding thresholds of sapling and canopy
height trees also were compared to evaluate the influence of dif-
ferent hydraulic demands of trees at two life-history stages. We
then compared single-vessel air-seeding thresholds across organ
types as well as across growth rings in perennial organs. This
experiment coincided with the third driest summer in the past
100 yr at the study site (Supporting Information Fig. S1), thereby
providing additional context about how close these four hard-
wood species were pushed to their physiological tipping point.

Materials and Methods

Plant material

All measurements were made on forest-grown sapling (mean
diameter = 1.3� 0.3 cm and age = 16� 6 yr at 20 cm above soil
surface) and canopy (mean diameter = 38� 16 cm and
age = 79� 16 yr at breast height) sized trees of Acer rubrum L.,
Fagus grandifolia Ehrh., Fraxinus americana L. and Quercus
rubra L. at Harvard Forest, Petersham, MA, USA. Single-vessel
air-seeding measurements were conducted in June, July and
August of 2016 on three understory sapling trees and two to three
canopy trees of each species following the methods of Melcher
et al. (2003) and Johnson et al. (2014). Entire saplings were exca-
vated, including roots, placed in black plastic bags with moist
paper towels, and transported to the laboratory within 15 min.
Bagged saplings were kept moist and stored at 4°C while organ
samples were excised for measurement. Saplings were collected
from areas of similar shade and soil conditions and all measure-
ments were completed within 36 h. On each sapling, the air-
seeding threshold was measured on six samples each of petioles
(1.5� 0.3 mm; mean diameter� SD), current-year stems
(2.1� 0.7 mm), multi-year stems (3-yr old; 4.4� 1.2 mm),
trunk samples (30–50 cm above soil surface; 11.7� 3.6 mm) and
roots (> 20 cm from the tree base; 3.6� 1.1 mm).

Sampling of canopy-tree organs required some variation in
protocol. Petiole (1.5� 0.3 mm; mean diameter� SD), current-
year (3.1� 1.1 mm) and multi-year stem samples (6.1�
1.5 mm) were collected from one or two sun-exposed branches in
the upper canopy of each tree (c. 20 m above the forest floor)
using a canopy lift (Scanlift SL240, Joensuu, Finland). Branches
were transported to the laboratory and processed identically to
the saplings. In addition, trunk and root samples of canopy trees
were collected using a 5/8-inch inner-diameter plug cutter
(Steelex D1050 Tenon Cutter, Woodstock International Inc.,
Bellingham, WA, USA) and power drill. Due to the destructive
nature of this sampling, only one to two ‘plugs’ were collected
from each tree’s trunk and roots until six measurements could be
made within the 2016, 2015 and 2014 growth rings (three mea-
surements in earlywood and three measurements in latewood for
trunks). Plugs were stored in plastic bags with moist paper towels
and transported back to the lab for immediate measurements.
The upper surface of each plug was shaved with a microtome
(G€artner et al., 2014) to provide a flat surface for air-seeding
measurements. Fraxinus americana and Q. rubra trunks can have
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long vessels resulting in a low number of vessel endings within
each plug. Therefore, trunk sampling was modified for these two
species to collect longer samples and increase the chances of
encountering a vessel ending during sampling. A section of trunk
xylem and bark was chiseled out that was c. 10 cm wide, 30 cm
tall and 5 cm deep. The upper and lower surfaces of the section
were shaved clean with a sharp knife and air-seeding measure-
ments progressed identically to that of the plugs.

Long samples may result in multiple vessels needing to air-seed
before detection with the single-vessel air-injection method (Ven-
turas et al., 2016). Therefore, and to facilitate comparisons across
organ types and species, most samples were 6 cm long unless
otherwise noted, thereby balancing sampling efficiency and still
maintaining a relatively short sample length (as suggested by
Venturas et al., 2016). Some samples were necessarily shorter, for
example F. grandifolia and Q. rubrum petioles, which had a maxi-
mum length of c. 1–3 cm, as well as all canopy-sized tree root
‘plugs’ and A. rubrum and F. grandifolia trunk ‘plugs’ that were
c. 1.5 cm. To assess the potential impact of sample length when
comparing air-seeding measurements across organs for each
species (Venturas et al., 2016), we recorded and report the num-
ber of open vessels (vessels without an ending in the segment; see
next section) that were encountered during sampling.

Single-vessel air-seeding threshold

In order to measure the vulnerability to air-seeding of pit-
membranes between two adjacent vessels we used the single-vessel
air-injection method (Melcher et al., 2003; Johnson et al., 2014).
Trees were processed starting with petioles, followed by stems,
multi-year stems, trunks and then roots. Extensive drying of pit
membranes could reduce resistance to air-seeding due to pit
membrane shrinkage (Zhang et al., 2017). Therefore, in addition
to storing saplings whole in a bag at 4°C with moist paper towels
during sampling, measurements proceeded rapidly from the time
of excision. Briefly, samples were excised in the air, cut to length
with a razor blade and mounted in a multi-position vice
(Panavise model 201, Medford, OR, USA). The proximal end of
the sample was immediately immersed in water more than half
the length of the sample and the transverse surface of the sample
(distal end) was observed under a dissecting microscope to iden-
tify a vessel for measurement. Next, a glass capillary tube (WPI,
1B150-4; WPI Inc., Sarasota, FL, USA) that had been pulled to
a tip c. 15–20 lm in diameter (Vertical Micropipette Puller,
model P-30; Sutter Instrument, Novato, CA, USA) was inserted
into a xylem vessel using a micromanipulator, and glued in place
with a cyanoacrylate glue (Loctite 409; Loctite, D€usseldorf, Ger-
many) and a hardening accelerant (Loctite 712). The end of the
capillary tube was attached to a 1-m length of PEEK tubing
(51085K48; McMaster-CARR, Princeton, NJ, USA) connected
to a Scholander pressure chamber (#1505; PMS Instruments,
Corvallis, OR, USA). Working with the samples in this way min-
imized exposure to air and kept samples hydrated and as close to
their natural state as possible. Pressure was increased at a rate of c.
0.5 MPa min�1 (Johnson et al., 2014) until bubbles were visible
exiting the submerged proximal end of the sample. This positive

pressure value was recorded as equal to but opposite the sign of
the air-seeding threshold of the aspirated pit membrane of the
vessel. Measurements more negative than �5.5MPa were termi-
nated at that point for safety and those measurements were dis-
carded. Measurements less negative than �0.05MPa also were
discarded because the vessel was presumed to be open at both
ends of the sample (Johnson et al., 2014). Each petiole, current-
year stem and root sample was used to make a single air-seeding
measurement. The six multi-year stem and six trunk samples
were each randomly split to sample early-wood or late-wood ves-
sels. On each of these samples, three air-seeding measurements
were made in random order – one each in vessels of the 2016,
2015 and 2014 growth rings – at c. 120 degree intervals around
the stem sample to avoid any artifacts resulting from previous
measurements on the same sample. To determine if air-seeding
threshold varied across organ types and size classes, air-seeding
threshold (log transformed) was modeled as a function of organ
type interacting with size class for each species using linear-
mixed-effects models in R (R Core Team, 2015; Bates et al.,
2016). Models included a random intercept for organ sample
within tree to account for the nested sampling design. Tukey’s
pairwise comparisons were used to determine significant differ-
ences in air-seeding threshold between each organ type and size-
class combination for each species (a = 0.05). To test whether
air-seeding threshold differed between early- and latewood ves-
sels, air-seeding threshold (log-transformed) was modeled as a
function of wood type (early or late) interacting with species with
a random intercept for growth ring nested within organ sample
and tree.

In order to determine if air-seeding threshold changed with
xylem age, the slope of a regression between the air-seeding
threshold (MPa) and xylem age (ages of 0, 1 and 2 for vessels
formed in 2016, 2015 and 2014, respectively) was calculated for
each multi-year and trunk sample. A positive slope indicated that
air-seeding threshold became less negative with age in that sample
(i.e. resistance to air-seeding decayed with time). Slopes were
averaged by species and size class and each group’s slope was
tested against zero with Bonferroni corrected one-sample t-tests
(a = 0.05). We repeated this analysis to test if the glue accelerant,
or time since excision, impacted measurements by replacing
‘xylem age’ with ‘measurement order’ and found that there was
no effect of measurement order on air-seeding threshold.

Benchtop dry-down vulnerability curves

Single-vessel air-seeding threshold data were compared to organ-
level percentage loss of conductivity (PLC) curves for current-
year stems in saplings of each species using the benchtop dry-
down method (cf. Choat et al., 2010). Branches 1–2 m long (one
branch per tree) were collected in August 2017 during predawn
hours, stored in black plastic bags with moist paper towels, and
transported to the lab. A segment of each branch containing only
current-year’s extension growth was labeled for measurement.
Branches were then placed on the laboratory bench at room tem-
perature and allowed to dry to a range of water potentials for up
to 72 h before being returned to black plastic bags for a
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minimum of 30 min to equilibrate. Water potential was mea-
sured on 1–2 leaves using a pressure chamber. Then, the cut end
of the branch was submerged in water and recut with shears three
to five times in c. 1 cm increments and the branch was covered in
a black plastic bag to prevent transpiration and facilitate relax-
ation of water tension (Wheeler et al., 2013; Torres-Ruiz et al.,
2015). Branches were relaxed for between 10 and 30 min
depending on the water potential (longer times for more negative
water potentials).

Following relaxation, the branch was progressively cut under-
water with shears, until only the labeled current-year segment
remained. Segment ends were trimmed under water with a fresh
razor blade before measurements. The segment was then attached
to a modified Sperry apparatus (Sperry et al., 1988) equipped
with a flow meter (SLI-0430; Sensirion, St€afa, Switzerland) and
filled with filtered and degassed 20 mM KCl solution. Native
conductivity (Knat) was measured on each segment using a con-
stant pressure head for each sample of 1–6 kPa. Segments were
then vacuum-infiltrated (Espino & Schenk, 2011) overnight to
remove embolisms. The next day, segment ends were trimmed
underwater with a fresh razor blade and maximum conductivity
(Kmax) was measured. PLC was calculated as (1� (Knat/
Kmax))9 100. PLC curves were fit with Weibull curves and boot-
strapped 95% confidence intervals P12, P25 and P50 were
extracted using the FITPLC package in R (Duursma & Choat,
2017) to compare with air-seeding threshold data.

Vessel diameter

In order to determine if air-seeding threshold was correlated with
vessel size, the mean vessel-lumen diameter was calculated for
each species and organ type by using two or three cross-sections
per organ collected from the same plant material used for air-
seeding. Cross-sections were stained with a mixture of Astra blue
and Safranin-O (van der Werf et al., 2007) and imaged between
19 and 109 with a compound microscope (Leica ICC50 HD;
Leica Microsystems, Buffalo Grove, IL, USA). Images were pro-
cessed in IMAGEJ software (National Institutes of Health) to iso-
late individual vessels in binary images and to automatically
calculate the lumen area of each vessel. Vessel-lumen areas were
converted to vessel-lumen diameters by assuming circularity. Ves-
sel-lumen diameter was log-transformed and differences in the
mean vessel-lumen diameter across organs were tested using
ANOVA and Tukey’s pairwise comparisons for each species and
size class. Additionally, the mean air-seeding threshold of each
organ type was regressed against mean vessel-lumen diameter of
each organ type for each species and size class using major axis
regression in R (Warton et al., 2014).

Plant organ water potential

In order to determine water-potential gradients in trees, midday
water potentials (between 13:00 h and 15:00 h) were measured
on two individuals of each species and size class. Canopy trees
used were the same as those sampled for air-seeding threshold
(above). Due to the destructive nature of sampling saplings,

different individuals of similar age and size from nearby areas
were used for sapling water potentials. Thermocouple psychrom-
eters (JRD Merrill Specialty Equipment, Logan, UT, USA) were
used to measure water potential because standard pressure-
chamber methods are not possible for all organ types (i.e. stems,
trunks and roots). Petiole, current-year and multi-year stem seg-
ments c. 1 cm long were excised from the intact plant and imme-
diately sealed in individual psychrometer chambers (JRD Merrill
Specialty Equipment, Part #83-500). Trunk samples were col-
lected using a 35-mm-long Trephor microcorer (Rossi et al.,
2006) at 30 cm above the soil surface for saplings or at breast
height for canopy trees. Root samples from canopy trees were col-
lected at > 20 cm along a main root from the base of the tree
using the microcorer. Root samples from sapling trees were col-
lected > 20 cm along main roots from the base of the tree but
were of narrow enough diameter to be excised into c. 1-cm-long
segments and placed in the psychrometer chamber. Psychrometer
chambers (#83-3V and 81-500; JRD Merrill Specialty Equip-
ment, Logan, UT, USA) containing samples were connected to a
data logger (Campbell CR6; Campbell Scientific Inc., Logan,
UT, USA) with a multiplexer. The chambers were bagged and
suspended in a circulating water bath held at a constant
25� 0.2°C and allowed to equilibrate for 6–8 h until water-
potential readings stabilized. All psychrometers were calibrated
between 0 and �7.1MPa using NaCl solutions (R2 = 0.96�
0.03 (mean� SD); Brown & Bartos, 1982). Psychrometers have
been used to verify that pressure chamber measurements are accu-
rate (Boyer, 1967); we confirmed this with a separate experiment
that compared psychrometer and pressure chamber measure-
ments (Fig. S2). To verify that tree water potentials relaxed at
night, we also measured predawn (between 04:00 h and 05:00 h)
and midday (between 13:00 h and 15:00 h) water potentials with
a pressure chamber (Scholander et al., 1965) on 8–12 leaves per
species and size class. All analyses, statistics and figures were con-
ducted or produced in R (R Core Team, 2015; Wickham &
Chang, 2016).

Results

Only canopy A. rubrum trees exhibited single-vessel air-seeding
thresholds consistent with the VSH: petiole (�0.8� 0.4 MPa;
mean air-seeding threshold � 2 SE) and root (�0.6� 0.3 MPa)
air-seeding thresholds were both significantly less negative than
multi-year stems (�3.0� 0.8 MPa; a = 0.05; Fig. 1a). By con-
trast, the other diffuse porous species, F. grandifolia, and the two
ring-porous species, F. americana and Q. rubra, did not exhibit
evidence for segmentation of air-seeding thresholds in either
canopy trees or saplings (Fig. 1b–d). Although there was not a
consistent mean difference, three species had organs where the
air-seeding threshold measurements in one size class were less
resistant than the mean value of the other size class. For example,
all measurements in roots from canopy-size A. rubrum
(�0.6� 0.3 MPa; mean air-seeding threshold � 2 SE) and
Q. rubra (�0.5� 0.2 MPa) were less resistant the mean value for
their sapling roots (A. rubrum: �1.9� 0.7 MPa; Q. rubra:
�1.5� 0.5 MPa; Fig. 1a,d), and sapling petioles in F. grandifolia
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(�0.7� 0.2 MPa) were less resistant than the mean value for
their canopy petioles (�2.0� 0.8 MPa; Fig. 1b).

Despite the large sample size (166 multi-year and trunk seg-
ments), we found no evidence that air-seeding threshold
changed across annual growth rings (Fig. 2a–d). The air-seeding
threshold of early- vs latewood xylem vessels within an annual
growth ring from trunk and multi-year stems also did not differ
significantly (Fig. S3). During air-seeding measurements, > 20%
of the total tested vessels in most organs had no endings, and in
some cases (most often in F. americana and Q. rubra), > 100
open vessels were tested in a single sample before finding a ves-
sel with an ending that could be used for a measurement
(Fig. S4).

Vessel diameter was always smaller in petioles and current-year
stems than in trunks and roots (Fig. 3a–h). However, petioles
and current-year stems within A. rubrum (both size classes),
F. grandifolia (saplings), F. americana (canopy) and Q. rubra
(both size classes) showed no significant difference in vessel diam-
eter, nor did roots and trunks within a species for canopy size
trees of all four species, or multiyear stems and trunks for sapling
size F. americana. Mean air-seeding threshold per organ type did
not vary significantly with mean vessel-lumen diameter for any
species or size class (Fig. 3a–h).

The single-vessel air-seeding threshold most closely approxi-
mated P12 (Fig. 4; mean difference from air-seeding threshold
� SD = 0.10� 0.43MPa), whereas P25 (mean difference from
air-seeding threshold SD = 0.48� 0.31MPa) and P50 (mean
difference from air-seeding threshold SD = 1.14� 0.31MPa)
were 4.8 and 11.5 times worse predictors than P12, respectively.
Safety margins were calculated from the difference between the
mean air-seeding threshold (and current-year P12 values; Fig. 4)
and the minimum water potential each organ experienced during
midday in late July or early August. Comparison of predawn and

midday water potential values suggests that water potentials
relaxed each day by predawn (Table S1). In all cases, roots oper-
ated within their safety margins (mean = +0.58MPa; Table 1;
Fig. 5a–h), whereas petioles operated at or exceeded their safety
margin (mean =�0.49MPa, Table 1; Fig. 5a–h). Additionally,
A. rubrum, F. grandifolia and Q. rubra perennial organs operated
within their safety margins, but most F. americana organs (other
than roots and sapling multi-year stems) exceeded their safety
margins in both sapling and canopy trees (Table 1; Fig. 5).

Discussion

Single-vessel air-seeding thresholds and vulnerability
segmentation

Collectively, these data show that only canopy height Acer
rubrum trees (diffuse-porous) have different air-seeding thresh-
olds in different organ types (Fig. 1). We also found that most
organ types operated well within their hydraulic safety margins
even during an episodic drought (Table 1; Fig. 5). It is important
to note, as discussed below, that our safety margin estimates
based on single-vessel air-seeding thresholds are more conserva-
tive than those calculated from percentage loss of conductivity
(PLC) curves using the water potential where 50% of hydraulic
conductivity is lost (P50) to calculate the safety margin (Choat
et al., 2012; Wheeler et al., 2013; Johnson et al., 2016). Here,
mean single vessel air-seeding thresholds more closely align with
the initial inflection point on the vulnerability curves for these
species (i.e. P12, the ‘air-entry point’; Fig. 4). Therefore, the risk
of the air-seeding threshold being surpassed in an individual ves-
sel may be more than the risk of an entire vessel network reaching
P50. Furthermore, this interpretation is formulated in isolation
from other traits that would influence the spread of embolism,
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year stem segments; M-year, multiyear stem
segments.
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such as xylem network organization and sectoriality (Ellmore
et al., 2006; Loepfe et al., 2007; Schenk et al., 2008; Brodersen
et al., 2010, 2011; Lee et al., 2013). Although the single-vessel air
injection method allows for direct comparisons of drought resis-
tance at the scale of individual vessels, this method artificially
exposes randomly selected pit membranes to air-seeding pres-
sures, whereas a vessel in situ may not have air in an adjacent
organ to facilitate the air-seeding mechanism. Thus, some vessels
within an intact plant may persist as water-filled and functional
well beyond the air-seeding threshold of the pit membranes as
long as they are not exposed to air.

The segmentation of canopy A. rubrum based on single-vessel
air-seeding thresholds corresponds well with a study at the same
site in Acer saccharum, that also exhibited low variability of air-
seeding threshold values within organs and some evidence of

mean differences across organs (Choat et al., 2005). Therefore,
vulnerability segmentation of canopy-sized trees may be a com-
mon trait among Acer species, which show stronger evidence for
the hydraulic efficiency-safety trade-offs in xylem structure
hypothesized by Baas et al. (2004) (Lens et al., 2011; Gleason
et al., 2016). The vulnerability curve for A. rubrum, was consis-
tent with others reported in the literature (cf. our P50 of
�2.8MPa compared to �3.1MPa in Johnson et al., 2016).
Importantly, the air-seeding thresholds of A. rubrum approxi-
mated the air-entry point (P12) from the vulnerability curve for
current-year stems (Fig. 4) and align with the P05–P20 range for
vulnerability curves in other studies (Johnson et al., 2011, 2016;
Wheeler et al., 2013). Greater resistance to air-seeding and partial
support for vulnerability segmentation in A. rubrum, compared
to the other three study species, may contribute to its status as a
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generalist that has been increasing in dominance in eastern forests
(Abrams, 1998; Fei & Steiner, 2007).

The other diffuse-porous species, Fagus grandifolia, showed a
general (albeit nonsignificant) trend of increasing resistance to
air-seeding with increasing distance from the soil in canopy trees,
the opposite of what has been found for other woody
angiosperms (Choat et al., 2005; Johnson et al., 2016) and for
saplings in this study (Fig. 1b). Interestingly, organs in
F. grandifolia canopy trees closely followed the safety margin line
(Fig. 5d) and this may be related to vessel diameter tapering from
roots to shoots (Fig. 3b). Fagus grandifolia is shade-tolerant with
rapid stomatal responses times as a sapling (Woods & Turner,
1971) and may adopt a different hydraulic strategy once it
reaches full sun, similar to findings for Fagus sylvatica (Cochard
et al., 1999; Noyer et al., 2017). The similar air-seeding thresh-
olds in current-year and multi-year stems also is partially sup-
ported by data from Cochard et al. (1999) on F. sylvatica, where
sun-exposed current-year stem P50 values were not significantly
different than multi-year stems.

The two ring-porous species, Quercus rubra and Fraxinus
americana, showed no significant differences in air-seeding
thresholds across organ types, suggesting that they employ other
strategies to withstand or avoid drought. Local studies suggest
that Q. rubra tends to have deeper root systems than A. rubrum
that may allow access to different ground-water sources during
drought (Lyford, 1980; Burns & Honkala, 1990). The P50 from
our benchtop vulnerability curve for Q. rubra was 0.6 to 0.8MPa
more resistant than others reported in the literature (Cochard
et al., 1992; Tyree et al., 1992), and the air-seeding thresholds for
current-year Q. rubra stems align best with the P12 value (Fig. 4)
providing additional support that the P12 value can be attributed
to air entry into the xylem network.

We know of no reported vulnerability curves for different
organs in F. americana; however, our benchtop vulnerability
curve is consistent with Venturas et al. (2016) that reports 38%
loss of maximum conductivity at �1.4MPa, which is within the
variability around our mean of 48% loss of conductivity at the
same water potential. Again, the air-seeding threshold of current-
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Fig. 4 Xylem vulnerability curves for current-
year stems of sapling (a) Acer rubrum, (b)
Fagus grandifolia, (c) Fraxinus americana

and (d)Quercus rubra generated using the
benchtop dry-down method. Each point
represents one measurement on one stem.
Weibull fits (solid line) and 95% confidence
intervals (dashed lines) are reported for each
species. Shaded areas on each plot
correspond to the mean air-seeding pressure
(� 2 SE) as measured using the single-vessel
air-injection technique (Fig. 1).

Table 1 Hydraulic safety margins (� SE) of five organ types of four northern hardwood tree species in sapling and canopy size classes

Species Size class Petiole C-year M-year Trunk Root

Acer rubrum* Sapling + 0.21 (� 0.22) + 1.07 (� 0.27) + 1.80 (� 0.33) + 1.54 (� 0.32) + 1.71 (� 0.34)
A. rubrum Canopy � 0.71 (� 0.35) + 0.56 (� 0.41) + 2.19 (� 0.42) + 1.90 (� 0.43) + 0.29 (� 0.18)
Fagus grandifolia Sapling � 0.52 (� 0.19) + 0.13 (� 0.16) + 0.96 (� 0.24) + 0.75 (� 0.28) + 0.48 (� 0.18)
F. grandifolia Canopy + 0.23 (� 0.39) + 0.27 (� 0.38) + 0.57 (� 0.16) + 0.24 (� 0.21) + 0.39 (� 0.25)
Fraxinus americana Sapling � 0.53 (� 0.15) � 0.52 (� 0.25) + 0.12 (� 0.47) � 1.06 (� 0.24) + 0.31 (� 0.25)
F. americana Canopy � 1.57 (� 0.21) � 1.04 (� 0.35) � 2.26 (� 0.36) � 0.28 (� 0.17) + 0.53 (� 0.42)
Quercus rubra Sapling � 1.10 (� 0.27) + 0.16 (� 0.29) + 0.56 (� 0.23) + 1.20 (� 0.42) + 0.58 (� 0.43)
Q. rubra Canopy + 0.08 (� 0.27) + 0.62 (� 0.26) + 0.38 (� 0.21) + 0.85 (� 0.15) + 0.32 (� 0.11)

Safety margins (MPa) were calculated as mean midday minimum water potential (3–6 measurements) in summer 2016 minus the mean air-seeding
threshold (9–21 measurements using single-vessel air-injection) of each organ type (Fig. 5). Negative safety margins bolded for emphasis and standard
errors were propagated following Taylor (1997).
*Due to data loss, Acer rubrum sapling water potential data were collected on a hot day in June of 2017.
C-year, current-year stem segments; M-year, multiyear stem segments.
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year stems aligns best with the P12 value from the vulnerability
curve. Our air-seeding values are slightly lower than those
reported in Choat et al. (2004) perhaps due to individual, site or
sampling differences that are not clear. We found no support for
vulnerability segmentation in F. americana; however, there is evi-
dence that the main stem and primary branches of F. americana
have lower resistance to flow than lateral branches (Joyce &
Steiner, 1995), suggesting that some branches could exhibit vul-
nerability segmentation. Furthermore, leaf xylem of Fraxinus
excelsior experiences larger reductions in hydraulic conductance
than stems leading to the possibility of vulnerability segmentation
(Cochard et al., 1997).

Despite the general trend of vessel diameter being smaller in
petioles and current-year stems than in trunks and roots for all
species, there were no consistent, statistically significant trends
between mean air-seeding thresholds and mean vessel diameter,
similar to Christman et al. (2012) but seemingly at odds with the
controversial ‘rare pit’ hypothesis which proposes that larger ves-
sels should be more vulnerable to embolism spread (Christman
et al., 2009). Furthermore, preliminary data from 2015 measured
on 267 individual vessels of Q. rubra and A. rubrum saplings

showed no clear relationship between vessel diameter and air-
seeding threshold (Fig. S5), suggesting that vessel diameter may
not always be a good proxy for the number of intervessel connec-
tions and pits. Related to this, we also found no differences in
air-seeding thresholds between earlywood and latewood vessels,
contrary to expectations particularly for the ring porous species
(Fig. S3; Lo Gullo et al., 1995) providing further evidence that
the air-seeding threshold does not vary consistently with vessel
diameter or position within an annual growth ring for these
species.

We found that, within an organ, resistance to air-seeding did
not decline in older annual growth rings (Fig. 2) although a
decline has been reported for the diffuse-porous species
A. saccharum using single-vessel air-injection (Melcher et al.,
2003) and for Populus tremuloides using hydraulic conductivity
measurements and dye staining (Sperry et al., 1991). Ring-porous
species in temperate regions do not typically use older rings to
transport water for > 1 yr, whereas diffuse porous trees can utilize
older rings for axial sap transport in conjunction with current-
year xylem (cf. Umebayashi et al., 2010). The trees in our study
were exposed to drought and seasonal freeze–thaw cycles that are
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believed to degrade pit-membrane resistance (Melcher et al.,
2003). However, based on the minimal impact of the severe
drought on the safety margin estimates experienced by trees in
our study the water deficit for the study site was unlikely to lead
to significant pit membrane damage. Instead, perhaps A. rubrum,
with relatively high resistance to air-seeding maintained that
resistance for the 3 yr measured. By contrast, the other species
generally had weak resistance to air-seeding, even within the cur-
rent-year ring, and therefore the resistance to air-seeding would
not necessarily decrease much more over time.

Understanding the single-vessel air-seeding thresholds

The within-organ variability in air-seeding thresholds agrees with
past studies using single-vessel air-injection (Melcher et al., 2003;
Choat et al., 2005; Christman et al., 2012; Johnson et al., 2014;
Pratt et al., 2015; Venturas et al., 2016) and may be driven by
variability in intervessel pit area (Wheeler et al., 2005) or pit
membrane thickness (Li et al., 2016). If individual vessel air-
seeding values drive the shape of a vulnerability curve, one would
expect individual vessel air-seeding values to span the entire range
of the sloped portion of the vulnerability curve. Therefore, a vul-
nerability curve with a weak initial inflection might be predicted
to have high variability in air-seeding thresholds whereas a steep-
sloped vulnerability curve shape might be driven by low variability
in air-seeding thresholds. Importantly, however, air spreads
through a complex network of interconnected vessels of varying
sizes and vulnerabilities. A network with frequent intervessel con-
nections provides a less tortuous pathway for embolism spread;
however, a few highly resistant connections (as some of our data
suggest) may isolate that embolism to a discrete sector of the
xylem network. Therefore, the mean air-seeding threshold of indi-
vidual vessel-vessel connections within an organ would appear to
approximate a value between P50 (assuming large amounts of net-
work connectivity) and P12 (or lower; assuming less network con-
nectivity), which our data support. Given the sigmoid shape of
the vulnerability curves measured here, and those reported else-
where in the literature for two of these species (cf. Q. rubra in
Cochard et al., 1992; A. rubrum in Johnson et al., 2016), the vari-
ability observed in our air-seeding data is not unusual.

The single-vessel air-injection technique directly quantifies the
resistance to embolism spread of individual vessels, yet there are
assumptions regarding sample length that must be considered. As
discussed in the methods, longer samples may result in more ves-
sels needing to air-seed before a measurement is detected and
result in artificially more-resistant air-seeding thresholds (Ven-
turas et al., 2016). Whereas vessel lengths in A. rubrum can be
shorter than 6 cm, vessel lengths of F. grandifolia, F. americana
and Q. rubra are typically longer than 6 cm (Zimmermann &
Jeje, 1981; Zimmermann & Potter, 1982). Using a standard
sample length of 6 cm, we found that usually > 25% of vessels
did not have a vessel ending for a given organ suggesting that
most of our measurements likely included only one vessel
(Fig. S4). Furthermore, we focused on within-species compar-
isons to limit the confounding effect of vessel length differences
between species.

Hydraulic safety margins

Even during the third driest summer in the last 100 yr, most
perennial organs of the trees studied were pushed just up to
their air-seeding thresholds, but not beyond. The exception was
F. americana, in which all organs except roots operated at or
beyond their safety margin (calculated with air-seeding thresh-
old or P12). The negative safety margins suggest lower resistance
to drought at this site compared to the other species and corre-
spond well with early leaf-drop and branch dieback in
F. americana, noted in nearby Vermont, attributed to the 2016
drought (Vermont Department of Forests, Parks and Recre-
ation, 2017). Interestingly, we found negative safety margins in
petioles of sapling-sized F. grandifolia and Q. rubra but not
canopy-size trees of the same species, suggesting, perhaps, that
larger individuals of these species may have sufficient water stor-
age to accommodate a drought of the magnitude experienced in
2016. Furthermore, our safety margins were calculated for
organs that are less commonly studied but still support gener-
ally narrow margins for deciduous angiosperms (Choat et al.,
2012; Martin-StPaul et al., 2017) except in A. rubrum, a species
that we expect to continue expanding in eastern forests. We
expect that longer or repeated droughts, however, may be a
contributing factor in decline for species impacted by pests or
disease.

Conclusions

We found limited support for vulnerability segmentation of air-
seeding thresholds and, except for F. americana, most perennial
organs of trees at our study site were not pushed beyond their
air-seeding thresholds, even during the third-driest growing sea-
son in recorded history. Therefore, these species may be able to
tolerate the degree of drought experienced in 2016 and
hydraulic failure may not be common in perennial tree organs
(Cochard & Delzon, 2013). However, further research, such as
experimental drought manipulation, will help to determine if
these species can withstand more frequent and intense droughts
(Diffenbaugh & Field, 2013). Finally, the general lack of signifi-
cant differences between organ type air-seeding data for our
species strongly suggests that other factors like xylem network
connectivity (Ellmore et al., 2006) may better explain vulnerabil-
ity curve shape (Loepfe et al., 2007) and calculated P50 values
(Johnson et al., 2016), because vulnerability curves are an emer-
gent property of the entire network rather than a single network
property.
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