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Abstract: The cost-benefit model for the evolution of carnivo-
rous plants posits a trade-off between photosynthetic costs as-
sociated with carnivorous structures and photosynthetic bene-
fits accrued through additional nutrient acquisition. The model
predicts that carnivory is expected to evolve if its marginal ben-
efits exceed its marginal costs. Further, the model predicts that
when nutrients are scarce but neither light nor water is limiting,
carnivorous plants should have an energetic advantage in com-
petition with non-carnivorous plants. Since the publication of
the cost-benefit model over 20 years ago, marginal photosyn-
thetic costs of carnivory have been demonstrated but marginal
photosynthetic benefits have not. A review of published data
and results of ongoing research show that nitrogen, phospho-
rus, and potassium often (co-)limit growth of carnivorous plants
and that photosynthetic nutrient use efficiency is 20-50% of
that of non-carnivorous plants. Assessments of stoichiometric
relationships among limiting nutrients, scaling of leaf mass with
photosynthesis and nutrient content, and photosynthetic nu-
trient use efficiency all suggest that carnivorous plants are at
an energetic disadvantage relative to non-carnivorous plants in
similar habitats. Overall, current data support some of the pre-
dictions of the cost-benefit model, fail to support others, and
still others remain untested and merit future research. Rather
than being an optimal solution to an adaptive problem, botani-
cal carnivory may represent a set of limited responses constrain-
ed by both phylogenetic history and environmental stress.

Key words: Carnivorous plants, stoichiometry, potassium, pho-
tosynthesis, phosphorus, nitrogen, cost-benefit model.

Introduction

Carnivory has evolved repeatedly among angiosperms, and
+600 species of carnivorous plants grow throughout the world
in bogs, fens, and outwash plains, atop inselbergs, tepuis, and
other mountains, in valleys and on stream banks, and in lakes
and ponds - usually wherever light and moisture are abundant
and soil macronutrients, especially nitrogen, phosphorus, and
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potassium, are severely limiting (Givnish et al., 1984, 1989;
Benzing, 1987). Charles Darwin (1875) provided the first de-
tailed experimental evidence for carnivory in several genera,
and his son Francis was the first to show unequivocally that
the growth of a carnivorous plant, the sundew Drosera rotundi-
folia L., was enhanced by nutrients acquired through its car-
nivorous organs (Darwin, 1878). Through the first 75 years of
the 20th century, botanists focused on finding and describing
new carnivorous plants, illustrating their unique organs, un-
ravelling their physiological mechanisms for nutrient uptake
from captured prey, and determining their evolutionary his-
tory (Lloyd, 1942; Liittge, 1983; Juniper et al., 1989). By the
early 1980s, it was clear that carnivory was a convergent trait
among a diversity of unrelated plant families (reviews in Al-
bert et al., 1992; Ellison and Gotelli, 2001). This conclusion,
together with more detailed habitat data, suggested that car-
nivory is an adaptive trait in environments where critical nu-
trients are scarce or unavailable and light is not limiting, a hy-
pothesis that was crystallized in a cost-benefit model (Givnish
etal., 1984).

The cost-benefit model has two components. The marginal
benefit is hypothesized to be an increased rate of photosynthe-
sis per unit of photosynthate invested in (relatively inefficient
or costly) carnivorous structures. The marginal cost is the unit
photosynthate required for the production of additional car-
nivorous structures. In focusing on enhanced photosynthesis
as the primary benefit of carnivory, the cost-benefit model
makes three predictions. First, “plants with mutations for such
investments (i.e., carnivorous organs) should have an energet-
ic advantage in competing with other (i.e., non-carnivorous)
plants” (Givnish et al., 1984: 490). Second, the primary ener-
getic benefit of carnivory would be either an increased rate of
photosynthesis per unit leaf mass or an increase in the total
leaf mass supported (Givnish et al., 1984: 490). Third, the ab-
solute benefit of carnivory should plateau and the marginal
benefit of carnivory should decline with increasing investment
in carnivory once factors other than nutrients begin to limit
photosynthetic rates (Givnish et al., 1984: 491). Following the
publication of the cost-benefit model, botanical research on
carnivorous plants shifted to measuring the costs and benefits
of carnivory and to attempting to test its predictions (Adamec,
1997 a). Here, I review and synthesize published literature on
photosynthesis and nutrient limitation in carnivorous plants,
and compare these data with global compilations on relation-
ships among photosynthesis and nutrients in non-carnivorous
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Table 1

Summary of studies (1878 -2005) of growth of carnivorous plants in response to addition of prey alone, inorganic nutrients (IN) alone

(normally to soil or water), or prey + IN. A positive response relative to controls is indicated by a “+”, no response by a “0”, a negative response by a
“-» and no data by “NA”. A “0” in the prey + IN column indicates no interaction between these two variables

Species Growth response to References?
prey alone IN alone prey +IN

Aldrovanda vesiculosa L. + + + 12

Dionaea muscipula Ellis NA - NA 20

Drosera aliciae R. Hamet NA + NA 1

Drosera binata Labill. var. multifida Mazrimas 0 + NA 23

Drosera capensis L. 0 + NA 23

Drosera capillaris Poir. NA + NA 1

Drosera closterostigma N. Marchant and Lowrie 0 0 14

Drosera filiformis Raf. NA NA 17

Drosera glanduligera Lehm. 0 0 14

Drosera intermedia Hayne +/0 NA NA 9, 25,27

Drosera rotundifolia L. +(0) + 6,15,17,21,22,25

Drosera spathulata Labill. NA NA 1

Nepenthes rafflesiana |ack + NA NA 18

Pinguicula alpina L. + + 0 15,24

Pinguicula planifolia Chapman + NA NA 9

Pinguicula vallisneriifolia Webb + NA NA 28,29

Pinguicula villosa L. + 0 0 15, 24

Pinguicula vulgaris L. + +/0/- +/0/- 2,13,15,24

Sarracenia alata Wood + + NA 3

Sarracenia flava L. + NA NA 9

Sarracenia leucophylla Raf. + NA NA 9

Sarracenia purpurea L. 0 +/0/- 0 4,7,10

Utricularia gibba L. + 0 22

Utricularia macrorhiza Le Conte +/0 NA 8,16, 19

Utricularia spp. NA - NA 5

Utricularia uliginosa Vahl 0 0 + 11

aReferences: 1. Adamec (2002); 2. Aldenius et al. (1983); 3. Brewer (2003); 4.
Chapin and Pastor (1995); 5. Chiang et al. (2000); 6. F. Darwin (1878); 7. Ellison
and Gotelli (2002); 8. Englund and Harms (2003); 9. Gibson (1983); 10. Gotelli
and Ellison (2002); 11. Jobson et al. (2000); 12. Kaminski (1987b); 13. Karlsson
and Carlsson (1984); 14. Karlsson and Pate (1992); 15. Karlsson et al. (1991); 16.
Knight and Frost (1991); 17. Krafft and Handel (1991); 18. Moran and Moran

plants (Wright et al., 2004, 2005). I use this synthesis to test
predictions of the cost-benefit model and assess the support
for it in light of over two decades of focused research.

Benefits and Costs of Carnivory

More than two dozen studies have tested whether growth of
carnivorous plants is, in fact, enhanced by carnivory (Table 1).
A meta-analysis of these data suggests there is a significant
positive effect of prey addition on plant growth (p =0.02, bi-
nomial test of 29 studies), but no significant effect of nutrient
additions (p =0.15) or nutrient x prey interaction (p=0.81). In
other words, additional nutrients gained from carnivory are
less valuable when plants are growing in relatively nutrient-
rich soils (Dixon et al., 1980; Aldenius et al.,, 1983; Karlsson
et al.,, 1991; Méndez and Karlsson, 2005) or eutrophied lakes
(Knight and Frost, 1991; Guisande et al., 2000; Jobson et al.,
2000), where plants are subject to atmospheric deposition of
nitrogen (Ellison and Gotelli, 2002), or when they are compet-
ing for light with non-carnivorous plants (Brewer, 2003). Over-
all, these studies provide some support for the predictions that

(1998); 19. Otto (1999); 20. Roberts and Oosting (1958); 21. Schulze and Schulze
(1990); 22. Sorenson and Jackson (1968); 22. Stewart and Nilsen (1992); 23.
Stewart and Nilsen (1993); 24. Thorén et al. (1996); 25. Thum (1988); 26. Wake-
field et al. (2005); 27. Wilson (1985); 28. Zamora et al. (1997); 29. Zamora et al.
(1998).

there is a marginal benefit to carnivory, and that the absolute
benefit plateaus with increasing level of nutrient availability.
However, the cost-benefit model expresses benefits in terms
of photosynthetic rates, not in terms of growth, so the support
provided for the cost-benefit model by these studies is only
indirect.

There have been fewer measurements of the costs of carnivory.
Three studies directly measured the carbon costs of mucilage
used in sticky traps by Drosera (Pate, 1986 [In his 1986 review,
Pate cites his own unpublished data that 3-6% of photosyn-
thate is used for mucilage production by Drosera. Although
this figure (and this paper) are subsequently cited in the liter-
ature, these data were never published.]; Thorén et al., 2003)
or Pinguicula (Zamora et al,, 1998). Two studies examined
changes in photosynthetic efficiency of traps relative to con-
ventional foliage (Knight, 1992; Ellison and Gotelli, 2002) fol-
lowing experimental changes in nutrient availability. Ellison
and Farnsworth (2005) showed that Darlingtonia californica
Torrey had significantly lower photosynthetic rates for its tis-
sue nitrogen and phosphorus content than was predicted by
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Photosynthetic nutrient use efficiency (PNUE)

Fig.1 Photosynthetic nitrogen (top) and
phosphorus (bottom) use efficiency by carniv-
orous plants and non-carnivorous plants. The

data on PNUEy and PNUE, for non-carnivo-

Carnivorous plants (N = 15) o 1 o rous plants are derived from the GlopNet data
base compiled by Wright et al. (2004); the

GlopNet (N = 710) © weo amme—{ | |-ammmm GlopNet data in the figure lack the four re-

cords of carnivorous plants (Sarracenia purpur-
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The carnivorous plant data are from Weiss
(1980), Knight (1992), Adamec (1997 b), Mén-
dez and Karlsson (1999), Wakefield et al.
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(2005), and Ellison and Farnsworth (2005).
PNUE for carnivorous plants is significantly
lower than PNUE for non-carnivorous plants
(PNUEy: t=4.1, df=723, p<1x10-5; PNUE,:

100 1000

10000
PNUE,: pmol CO, mol”' P s™

t=2.3; df=214; p=0.03). Data for aquatic
and terrestrial carnivorous plants are pooled
so that there are sufficient data for statistical
analysis.
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Fig.2 Photosynthesis per unit leaf mass for
carnivorous plants (data sources in Fig.1)
and non-carnivorous plants (from the Glop-
Net data base: Wright et al., 2004). Numbers
in parentheses are the total number of ob-
servations (each observation is a unique spe-
cies x site combination).
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general scaling relationships (Wright et al., 2004). This appears
to be a general property of carnivorous plants (Ellison and
Farnsworth, 2005). In contrast to predictions of the cost-bene-
fit model, however, photosynthetic nutrient use efficiency
(PNUE, expressed as pmol CO, fixed per mol nutrient per unit
time) is significantly lower for carnivorous plants than for non-
carnivorous plants (Fig.1). Further, the photosynthetic rate per
unit leaf mass of carnivorous plants is dramatically lower than
the photosynthetic rate per unit leaf mass of non-carnivorous
plants, including graminoids, forbs, and evergreen or decidu-
ous shrubs and trees (Fig. 2).

What Nutrients are Limiting for Carnivorous Plants?

Physiological processes and plant growth may be limited by
absolute concentrations of available nutrients or by their rela-
tive concentrations (Aerts and Chapin, 2000). Although Giv-
nish et al. (1984, 1989) discussed how nitrogen, phosphorus,
or other nutrients could limit photosynthesis of carnivorous
plants, virtually all subsequent studies have assumed that only
nitrogen is the primary nutrient gained through carnivory, and
that the primary benefit derived from carnivory is nitrogen
used to produce additional RuBP carboxylase-oxygenase to in-

crease CO, fixation rates. Although prey contribute 10-90% of
the nitrogen budget of carnivorous plants (reviewed by Ellison
and Gotelli, 2001), only two studies have examined directly
the linkage between nitrogen uptake by carnivorous plants
and photosynthetic rate. Ellison and Gotelli (2002) showed an
increase in photosynthetic rate following addition of inorganic
N (as NH,4CI) to pitchers of Sarracenia purpurea L., but this re-
sponse resulted from plants producing non-carnivorous phyl-
lodia following N addition; phyllodia photosynthesize 25%
more rapidly than carnivorous pitchers on the same plant. In
contrast, Wakefield et al. (2005) found no change in either leaf
morphology or photosynthetic rate of S. purpurea fed addition-
al prey. Their study also suggested that S. purpurea was prefer-
entially absorbing phosphorus from prey, and plants receiving
supplemental prey were more N-limited than control plants.

Nutrient content of carnivorous plants

Concentrations of N, P, and K in carnivorous plant leaves gener-
ally are lower than those in leaves of non-carnivorous plants
(Fig. 3) and normally well below concentrations at which each
nutrient is generally thought to limit growth or physiology.
The median leaf N content for “control” carnivorous plants
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Fig.3 Concentrations of N, P, and K in
N leaves of carnivorous plants and non-carnivo-
rous plants. Numbers in parentheses are total
number of observations (each observation is a
unique species x site combination). The thick
vertical line on each panel is the concentra-
tion below which the nutrient is considered
to be limiting based on its absolute concen-
tration (Aerts and Chapin, 2000). Data for
concentrations of N and P in leaves of non-

carnivorous plants come from the GlopNet
data base (Wright et al., 2004), whereas data
for concentrations of K in leaves of non-car-
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(plants provided with neither supplemental prey nor supple-
mental inorganic nutrients)=12.6 mg/g, which is well below
the 10th percentile for forbs, deciduous shrubs and deciduous
trees, and below the 25th percentile for graminoids. Similarly,
the median leaf P for “control” carnivorous plants (0.94 mg/g,)
is well below the 10th percentile for forbs, deciduous shrubs,
and deciduous trees, and modestly above that of graminoids.
Median leaf K of carnivorous plants is also quite low, but does
not differ dramatically from non-carnivorous species. Overall,
despite their generally herbaceous habit (among the carnivo-
rous plants, only the liana Triphyophyllum peltatum [Hutch.
and Dalziel] Airy Shaw [Dioncophyllaceae] produces wood
and its leaves no longer produce carnivorous glands once it
is a woody adult [Green et al., 1979]), carnivorous plants are
more similar to evergreen shrubs and trees than they are to
forbs or graminoids in terms of their leaf nutrient concentra-
tions (Fig. 3). Among non-carnivorous plants, evergreen trees
and shrubs have some of the lowest PNUE (Wright et al.,
2005), albeit still much higher than carnivorous plants.

Nutrient stoichiometry of carnivorous plants

Stoichiometric relationships among different nutrients can be
used to determine if their relative concentrations limit plant
growth (Koerselman and Meuleman, 1996; Aerts and Chapin,
2000; Olde Venterink et al., 2002; Sterner and Elser, 2002; Ag-

ren, 2004; Giisewell, 2004) and productivity of entire com-
munities or ecosystems (Bedford et al., 1999; Aerts and Chapin,
2000; Sterner and Elser, 2002; Schade et al., 2005). Historical-
ly, N and P have received the most attention: N limitation is
implied by N<20mg/g and N:P <14, whereas P limitation is
implied by P<1mg/g and N:P> 16 (Koerselman and Meule-
man, 1996; Aerts and Chapin, 2000). Co-limitation of N and P
is implied when concentrations of N and P are individually
limiting and when 14 <N:P<16.

Using these criteria, both N and P generally co-limit carnivo-
rous plant growth (cross-hatched areain Fig. 4). Tissue N is usu-
ally below 2% (=20 mg/g - Fig.3 top panel, and left-to-right
shading in Fig.4), tissue P is usually below 0.1% (=1 mg/g -
Fig. 3 centre panel, and right to left shading in Fig. 4), and with
few exceptions, the N:P ratios are not distinguishable from
15:1 (black reference line in Fig.4). Unsurprisingly, addition
of inorganic nutrients alone shifts plant nutrient content in
the expected direction (Fig. 5A): P addition results in N-limita-
tion, N addition results in P-limitation, and N + P addition re-
sults in somewhat more P-limitation than addition of P alone.
Ellison and Gotelli (2002) illustrated this in more detail by
varying the N: P ratio of the complete nutrient solution added
to the plants (see also Wakefield et al., 2005). In contrast, addi-
tion of prey alone tends to shift plant nutrient content in the
direction of N-limitation (Fig.5B). When prey and nutrients
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Fig.4 Nitrogen and phosphorus content of carnivorous plant genera.
(A) Aldrovanda; (W) Drosera; (<) Nepenthes; (®) Sarracenia; (O) Darling-
tonia; () Pinguicula; (m) Utricularia. Data sources as in Fig. 3. Critical
concentrations of N and P, and critical N:P ratios based on criteria of
Koerselman and Meuleman (1996) and Aerts and Chapin (2000). The
15:1 N:P ratio is indicated with a solid black line, and the range 14 <
N:P <16 is shaded in solid grey around the black line.

are added in combination in full factorial experiments, the in-
teraction is essentially the resultant of the vector changes in
nutrient limitation resulting from the addition of prey or nu-
trients alone (Fig. 5C). Overall, these studies lend further sup-
port to the hypothesis that the primary nutrient gained from
carnivory is P (Chandler and Anderson, 1976; Stewart and Nil-
sen, 1993; Wakefield et al., 2005).

More recently, Olde Venterink et al. (2002, 2003) focused at-
tention on the tri-partite relationship between N, P, and K.
In particular, they focus on the critical role of K, and sug-
gest that if K<8 mg/g then its availability can limit plant
growth. They further suggest critical ratios for P or P+ N limi-
tation (N:P>14.5, K:P>3.4), Kor K+N limitation (N:K> 3.1,
K:P<3.4), and pure N limitation (N:P<14.5, N: K< 2.1). From
these criteria, most carnivorous plants for which tissue con-
centrations of N, P, and K have been published appear to be P-
limited or N +P co-limited (Fig.3). Two experiments suggest
that relatively more P than other nutrients is taken up either
from prey or from complete nutrient solution (8-8-8 N-P-K
fertilizer). Additions of prey shifted Sarracenia purpurea from
being P-limited to K- or K+ N-limited (Wakefield et al., 2005;
Fig. 6). Sarracenia flava L. control plants are stoichiometrically
P-limited, and addition of prey, complete N-P-K fertilizer, or
prey x N-P-K shifted plants to being stoichiometrically N-lim-
ited (Christensen, 1976; Fig. 6). Triphyophyllum leaf tissue is K-
enriched in a surrounding K-poor soil (unpublished data cited
by Green et al., 1979), perhaps because this species preferen-
tially takes up K from prey. A prediction from these data would
be that growth of Triphyophyllum is co-limited by N and P.

Conclusions and Directions for Future Research

The cost-benefit model makes three predictions: 1) the pri-
mary energetic benefit of carnivory would be either an in-
creased rate of photosynthesis per unit leaf mass or an in-
crease in the total leaf mass supported; 2) the absolute benefit
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Fig.5 Response of carnivorous plants to: (A) addition of inorganic nu-
trients only (circles: Sarracenia purpurea [data of Chapin and Pastor,
1995]; inverse triangles: Drosera whittakeri [data of Chandler and An-
derson, 1976]); (B) addition of prey only (circles: Sarracenia purpurea
[data of Chapin and Pastor, 1995 and Wakefield et al., 2005]; squares:
Pinguicula villosa; squares with crosses: Pinguicula vulgaris; squares with
dots: Pinguicula alpina [data of Thorén and Karlsson, 1998]); (C) addi-
tion of prey and/or inorganic nutrients in a full factorial design (circles:
Sarracenia flava [data of Christensen, 1976]; inverse black and grey tri-
angles: Drosera whittakeri; inverse white and grey triangles [data of
Chandler and Anderson, 1976]: Drosera glanduligera [data of Karlsson
and Pate, 1992]). The black or white symbols are the controls and the
grey symbols are the prey, nutrient, or prey x nutrient additions. Ar-
rows indicate the direction of response to the treatments. The grey
shading indicates the zone of N and P co-limitation of growth defined
by Koerselman and Meuleman (1996): 14 <N:P < 16. Note that the lim-
its of the y-axis (% phosphorus) differ among the three panels.
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Fig.6 Ternary plot illustrating potential stoichiometric limitation of
N, P, and/or K in carnivorous plant genera. Grey lines indicate bound-
aries for nutrient limitation (criteria of Olde Venterink et al., 2002,
2003). Symbols as in Fig. 1 (but no Nepenthes data on this figure). Data
from Small (1972), Christensen (1976), Watson et al. (1982), Kaminski
(1987a), Foulds (1993), Adamec (1997 a), Ellison and Gotelli (2002),
Wakefield et al. (2005), and Ellison and Farnsworth (2005).

of carnivory should plateau and the marginal benefit of carni-
vory should decline with increasing investment in carnivory
once factors other than nutrients begin to limit photosynthetic
rates; 3) carnivorous plants should have an energetic advan-
tage in competing with non-carnivorous plants (Givnish et al.,
1984).

Prediction 1 is not supported by comparative data. Carnivo-
rous plants have lower photosynthetic rates per unit leaf mass
than non-carnivorous plants (Fig. 2), and lower photosynthetic
rates per leaf mass area than expected based on universal scal-
ing relationships among leaf traits (Ellison and Farnsworth,
2005). However, most available data address this prediction
only indirectly. Direct tests are rare and offer conflicting re-
sults. Ellison and Gotelli (2002) showed an increased rate of
photosynthesis in Sarracenia purpurea following addition of
inorganic nutrients, but the response was due to production
of non-carnivorous leaves. Wakefield et al. (2005) showed no
increased rate of photosynthesis in the same species following
addition of prey, but photosynthetic rates were measured on
fed leaves. Photosynthetic rates may increase in leaves that
are produced subsequent to feeding (E. J. Farnsworth and A. M.
Ellison, manuscript in preparation). Overall, data collected to
date are inadequate to test prediction 1. Because increased
growth rate is an inadequate proxy for marginal photosynthet-
ic benefits, experiments examining physiological responses to
prey or nutrient addition by a wide range of carnivorous plants
are needed to directly test the cost-benefit model for the evo-
lution of botanical carnivory.

Similarly, prediction 2 cannot be evaluated completely with
existing data. The key open question here is what limits pho-
tosynthetic rates in carnivorous plants. Both N and P are re-
quired for photosynthesis, and available data suggest that

growth of carnivorous plants is co-limited by these elements
(Figs.3-6). However, PNUE of carnivorous plants is extremely
low (Fig.1), and it is possible that rather than being limited
by nutrient availability, photosynthetic rates have been con-
strained through the plants’ evolutionary histories. The obser-
vation that carnivorous plants are more like evergreen herbs
and shrubs in terms of tissue nutrient concentrations and pho-
tosynthetic rates suggests an evolved strategy to conserve
carbon and nutrients. Carbon costs of carnivorous traps may
have been a significant selective pressure in the evolution of
carnivory that needs to be accounted for in models of its evo-
lution.

Lastly, prediction 3 is not tied directly to nutrient availability
or stoichiometry and I have not addressed it directly in this re-
view. However, available evidence indicates that carnivorous
plants do not compete directly with non-carnivorous plants
for nutrients (Ellison et al., 2003; Brewer, 2003), and generally
are subordinate competitors for light (Brewer, 1998, 1999a-c,
2003).

The cost-benefit framework is a good model for the optimiza-
tion of traits by evolution through natural selection (Givnish,
1986). Evolution does not always optimize, however. The phe-
notypes we see today represent both optimal, adaptive solu-
tions as well as the consequences of constraints imposed by
historical accidents (Gould and Lewontin, 1979). I suggest that
the evolution of carnivory is more like Hobson’s choice -
choosing the lesser of two evils in a bad situation - and that
the observed poor competitive ability and low photosynthetic
rates of carnivorous plants are consequent to a series of evo-
lutionary responses to conditions of extremely low nutrient
availability. As our knowledge of the evolutionary history and
phylogeny of carnivorous plants continues to expand, we
should focus more attention on what constraints limit the
range of morphological and physiological responses by these
botanical marvels.
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